Return to search

Design of polysaccharide-based nanogels for the controlled release of insulin / Conception de nanogels à base de polysaccharides pour la libération contrôlée d'insuline

La prise en charge du diabète de type I se fait à l’heure actuelle par des injections pluriquotidiennes d’insuline ou par l’utilisation d’une pompe à insuline qui va mimer l’activité pancréatique. Dans ce contexte, les nanogels sensibles au glucose représentent des candidats à fort potentiel pour une délivrance contrôlée de l’insuline.La majorité des matériaux développés à ce jour ne présentent pas d’études en vue d’application in vivo et ce, pour diverses raisons telles que la non validation du caractère biocompatible et biorésorbable de la matrice polymère. Afin de répondre à ces deux critères, nous avons choisi de développer des nanogels à base de polysaccharides biocompatibles et biodégradables.Des travaux antérieurs au sein du laboratoire ont porté sur la conception d’hydrogels à base d’acide hyaluronique. Le polysaccharide a été fonctionnalisé avec des dérivés de l’acide phénylboronique (PBA) et du maltose. Ces modifications permettent dans des conditions physiologiques de générer des réticulations boronate-ester. Ces liaisons permettent d’induire une modification de la structure des hydrogels en réponse à divers stimuli tel que le pH ou l’addition de composés saccharidiques.Afin de faciliter l’administration de tels matériaux, nous avons étendu ce concept à la formation de nanogels. Des nanogels sensibles au pH et/ou à l’addition de saccharides ont pu être obtenus en conditions physiologiques grâce au choix judicieux des polysaccharides partenaires modifiés par le PBA et des molécules portant des fonctions diol. Ces nanogels sont capables de piéger l’insuline lors de leur formation avec une efficacité d’encapsulation allant de 45% à 80% et une capacité d’encapsulation de 10% à 60%. Les premiers tests ont montré un faible relargage de l’insulin par nos nanogels.Finalement, au vue de la sensibilité au pH de nos nanogels et l’environnement acide présent autour des tumeurs, leur utilisation pour le traitement du cancer a été étudié. Des analyses in vitro ont démontré une faible toxicité de nos gels sur les cellules cancéreuses. Les premières expériences in vivo ont montré la capacité des nanogels à circuler dans le sang. / Type 1 diabetes management is currently done by multiple insulin injections or by the use of an insulin pump that will mimic pancreatic activity. In this context, glucose-sensitive nanogels represent high potential candidates for controlled delivery of insulin.The majority of materials developed so far are limited to biological in vitro studies, which is partly due to the non-biocompatibility and limited biodegradability of polymers used for the preparation of such materials. To fulfill these criteria, we proposed to develop nanogels based on biocompatible and biodegradable polysaccharides.Previous work in our laboratory focused on the design of boronate-crosslinked hydrogels based on hyaluronic acid. This polysaccharide was functionalized with derivatives of phenylboronic acid (PBA) and of maltose. The dynamic covalent boronate ester crosslinks between the polysaccharide chains enabled to induce a structural change of the hydrogel in response to various stimuli such as pH or addition of carbohydrate molecules.In order to facilitate administration of such materials, we extended the concept to the formation of nanogels. Sugar- and pH-sensitive nanogels could be successfully obtained in physiological conditions thanks to the judicious choice of the polysaccharide partners, bearing PBA moieties and diol-containing molecules.These nanogels can entrap insulin during their formation with an entrapment efficiency of 45% to 80% and a loading capacity ranging from 10% to 60%. Preliminary experiments indicated a low release of insulin from the nanogels.Finally, in view of the pH-sensitivity of these nanogels and the slight acidic pH of the tumor environment, we investigated their potential application for the treatment of cancer. In vitro experiment demonstrated a low toxicity of our nanogels on cancer cells. Preliminary in vivo experiments indicated that the nanogels can circulate in the bloodstream.

Identiferoai:union.ndltd.org:theses.fr/2017GREAV089
Date21 December 2017
CreatorsPoirot, Robin
ContributorsGrenoble Alpes, Auzély-Velty, Rachel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0035 seconds