Return to search

Exploration of Transition Metal Sulfide Catalysts Prepared by Controlled Surface Chemistry / Exploration de catalyseurs sulfures de métaux de transition préparés par chimie de surface contrôlée

L'hydrotraitement est un procédé catalytique important dans le raffinage du pétrole qui utilise des catalyseurs bimétalliques sulfurés NiWS ou NiMoS (ou CoMoS) supportés sur alumine. Leur mode conventionnel de préparation implique l’imprégnation d'une solution aqueuse de sels de Mo/W et de Ni/Co, puis l’activation par un agent sulfo-réducteur (H2S/H2). Pour répondre aux exigences environnementales et améliorer l'efficacité de l'hydrotraitement, des améliorations permanentes de la performance de ces systèmes catalytiques sont attendues. Ce travail se concentre sur la préparation de catalyseurs d'hydrotraitement hautement actifs par une approche de chimie de surface contrôlée (CSC) qui implique l'imprégnation successive de précurseurs moléculaires de MoV et NiII en solvant organique sur un support silice-alumine traité thermiquement. Dans la première partie de cette thèse, la genèse de la phase active du catalyseur CSC et conventionnel Mo et NiMo est étudiée par quick-XAS combinée à d’autres techniques (chimiométrie, XPS, RPE, STEM-HAADF, modélisation moléculaire). Nous proposons ainsi des structures moléculaires depuis les précurseurs oxydes de Mo et Ni supportés jusqu’aux nombreuses espèces intermédiaires (oxysulfure et sulfures) en fonction de la température. Cette analyse multi-technique permet d'abord de révéler les spécificités de la genèse des catalyseurs CSC et conventionnels qui peuvent expliquer leurs différentes activités catalytiques. Ensuite, elle révèle également de nouvelles connaissances sur les mécanismes d’insertion du Ni dans la phase NiMoS en fonction de la préparation. Dans la seconde partie, la possibilité de remplacer Co et Ni comme promoteurs est explorée. Ceci est entrepris en synthétisant des catalyseurs alternatifs de type XYMoS, où X et Y sont des métaux de transition 3d. Comme suggéré par des études de modélisation quantiques antérieures, certaines formulations XYMoS peuvent présenter un effet de synergie analogue à ceux des phases actives CoMoS et NiMoS. L’étude des formulations les plus prometteuses méritent d'être approfondies afin de mieux comprendre leur fonctionnement. / Hydrotreating is an important catalytic process in petroleum refining which uses sulfided bimetallic catalysts NiWS or NiMoS (or CoMoS) supported on alumina. Their conventional preparation involves an incipient wetness impregnation of an aqueous solution of Mo/W and Ni/Co salts, and then activation by a sulfo-reductive agent (such as H2S/H2). To meet environmental regulations and improve the energy efficiency of hydrotreatment, permanent improvements on the performance of these catalytic systems are expected. This work is thus focused on the preparation of highly active hydrotreating catalysts through a controlled surface chemistry (CSC) approach; which involves the successive impregnation of Mo5+ and Ni2+ molecular precursors in an organic solvent on a thermally treated silica-alumina support. In the first part of this thesis, the active phase genesis of CSC and conventional Mo and NiMo catalysts is studied by in situ quick-XAS combined with various other techniques (chemometrics, XPS, EPR, STEM-HAADF, molecular modeling). We thus propose molecular structures from the oxide of supported Mo and Ni precursors up to the numerous intermediate sulfided species as a function of temperature. This multi-technique analysis enables first to reveal the specific features of the genesis of CSC and conventional catalysts which may explain their different catalytic activities. Then, it also reveals new insights into the mechanisms of Ni promoter incorporation into the NiMoS phase as a function of the preparation. In the second part, the feasibility of replacing Co and Ni as promoters is explored. Using the CSC method, we attempted to synthesize alternative catalysts of the form XYMoS ternary sulfides, where X and Y are 3d transition metals. As suggested by previous quantum simulations, certain XY formulations possibly reveal a synergy effect as observed in CoMoS and NiMoS active phases. The most promising formulations merit further investigations.

Identiferoai:union.ndltd.org:theses.fr/2018LYSEN063
Date20 December 2018
CreatorsArancon, Rick Arneil
ContributorsLyon, Raybaud, Pascal
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds