Return to search

Implication of DNA damage and repair in viability and differentiation of muscle stem cells / Implication des dommages à l’ADN et leur réparation sur la viabilité et la différentiation des cellules souches musculaires

Les cassures double-brin (DSB) sont des dommages dangereux de l’ADN et représentent un facteur de risque pour la stabilité du génome. Le maintien de l'intégrité du génome est essentiel pour les cellules souches adultes, qui sont responsables de la régénération des tissus endommagés et de l'homéostasie tissulaire tout au long de la vie. La régénération musculaire chez l'adulte repose sur les cellules souches musculaires (cellules satellites, SCs) qui possèdent une remarquable capacité de réparation des DSB, mais dont le mécanisme sous-jacent reste inconnu. Ce projet de thèse consistait à étudier comment la différenciation musculaire est affectée lorsque la réparation des DSB est altérée, et quels sont le(s) mécanisme(s) et les conséquences de ce défaut de réparation sur la régénération musculaire. Au cours de cette étude, il est apparu de façon originale que les facteurs de réparation des DSB peuvent affecter la myogenèse, indépendamment de leur fonction dans la réparation de l'ADN. La présente étude a porté sur le rôle de la protéine kinase dépendante de l'ADN (DNA-PK), un facteur crucial pour la réparation non-homologue des DSBs (NHEJ), au cours de la différenciation musculaire chez la souris. L’étude a ciblé l'activation des SCs et la régénération musculaire in vitro et in vivo et a également abordé la régulation de cette kinase. Le rôle "canonique" de la DNA-PK, et donc du NHEJ, dans les SCs a également été étudié en présence de lésions de l'ADN radio-induites. Le rôle d’ATM, une kinase qui orchestre les réponses cellulaires aux DSB, a également été abordé dans le contexte de la régénération musculaire. Ces résultats confirment la notion émergente du rôle multifonctionnel des protéines de réparation de l’ADN dans d’autres processus physiologiques que la réparation elle-même, ce qui m’a également permis de réaliser une étude bibliographique. Ce travail i) identifie de nouveaux régulateurs de la myogenèse et ii) contribue à la compréhension de la résistance des cellules souches musculaires au stress génotoxique. Ces résultats pourraient avoir des implications dans l'amélioration des thérapies cellulaires de la dysfonction musculaire en agissant sur les régulateurs nouvellement découverts. / DNA double-strand breaks (DSBs) are dangerous DNA damages and a risk factor for genome stability. The maintenance of genome integrity is crucial for adult stem cells that are responsible for regeneration of damaged tissues and tissue homeostasis throughout life. Muscle regeneration in the adult relies on muscle stem cells (satellite cells, SCs) that have a remarkable DSB repair activity, but the underlying mechanism is not known. The aims of the present PhD project were to investigate how muscle differentiation is affected when DSB repair is impaired, and which are the mechanism(s) and the consequences on muscle regeneration. During this study, a novel possibility has arisen, namely that DSB repair factors affects myogenesis independently of their DNA repair activity, suggesting a novel function, not previously anticipated, of these factors. The present study has addressed the role of DNA-dependent protein kinase (DNA-PK), a crucial factor in non-homologous end-joining (NHEJ) repair of DSBs, in muscle differentiation in the mouse. Studies have targeted SC activation and muscle regeneration in vitro and in vivo and also addressed the regulation of this kinase. In parallel the more “canonical” role of DNA-PK, and thereby of NHEJ, has been investigated in SCs via radiation-induced DNA damage. The role of ATM, a kinase that orchestrates cellular responses to DSBs in muscle regeneration has also been addressed. These results support the emerging notion of multifunctional repair proteins in a variety of physiological processes beyond the repair process itself, on which I have conducted a bibliographical study. This work i) identifies novel regulators of myogenesis, and ii) helps understanding the resistance of muscle stem cells to genotoxic stress. It has potential implications for improving cellular therapies for muscle dysfunction by acting on the newly discovered regulators.

Identiferoai:union.ndltd.org:theses.fr/2018SORUS125
Date20 September 2018
CreatorsSutcu, Haser
ContributorsSorbonne université, Ricchetti, Miria
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0057 seconds