Return to search

Characterization of the Protein Lysine Methyltransferase SMYD2

Our understanding of protein lysine methyltransferases and their substrates remains limited despite their importance as regulators of the proteome. The SMYD (SET and MYND domain) methyltransferase family plays pivotal roles in various cellular processes, including transcriptional regulation and embryonic development. Among them, SMYD2 is associated with oesophageal squamous cell carcinoma, bladder cancer and leukemia as well as with embryonic development. Initially identified as a histone methyltransferase, SMYD2 was later reported to methylate p53, the retinoblastoma protein pRb and the estrogen receptor ERalpha and to regulate their activity. Our proteomic and biochemical analyses demonstrated that SMYD2 also methylates the molecular chaperone HSP90 on K209 and K615. We also showed that HSP90 methylation is regulated by HSP90 co-chaperones, pH, and the demethylase LSD1. Further methyltransferase assays demonstrated that SMYD2 methylates lysine K* in proteins which include the sequence [LFM]-₁-K*-[AFYMSHRK]+₁-[LYK]+₂. This motif allowed us to show that SMYD2 methylates the transcriptional co-repressor SIN3B, the RNA helicase DHX15 and the myogenic transcription factors SIX1 and SIX2. Finally, muscle cell models suggest that SMYD2 methyltransferase activity plays a role in preventing premature myogenic differentiation of proliferating myoblasts by repressing muscle-specific genes. Our work thus shows that SMYD2 methyltransferase activity targets a broad array of substrates in vitro and in situ and is regulated by intricate mechanisms.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/32467
Date January 2015
CreatorsLanouette, Sylvain
ContributorsCouture, Jean-François, Figeys, Daniel
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0025 seconds