Return to search

Treatment of methane and swine slurry from the piggery industry by biofiltration / Traitement du métane et du lisier issus de l'industrie porcine par biofiltration

Abstract: The piggery industry is very important in Canada, but localized production of large quantities of swine slurry causes severe environmental problems such as aquatic pollution and emissions of methane, a potent greenhouse gas. There are many technologies that can reduce the impact of these issues, but biofiltration is the only viable process that can treat both pollutants. The main objectives of this thesis are to study the biofiltration of methane at concentrations representative of the piggery industry and to achieve the simultaneous treatment of methane and swine slurry with a single biofilter. Laboratory-scale experiments were used to better understand the biofiltration of methane from the piggery industry. Using an inorganic filter bed, it was possible to reach a maximum elimination capacity of 14.5 ± 0.6 g·m -3 ·h-1 for an inlet load of 38 ± 1 g·m -3 ·h-1 . The removal efficiency was relatively stable with the methane concentration and the biofilter satisfied first order kinetics. By decreasing the nitrate concentration in the nutrient solution, a concentration of 0.1 gN·L-1 proved to be sufficient for proper biofilter operation. Furthermore, once all inorganic sources of nitrogen were removed, the presence of microorganisms capable of fixing atmospheric nitrogen was established. Carbon and nitrogen mass balances suggested that the carbon accumulated within the biofilter was probably used for the production of storage compounds rather than for cell synthesis. The viability of simultaneously treating methane and swine slurry was demonstrated by using an innovative biofilter design to overcome the inhibition of methane biodegradation by swine slurry. Although generally less efficient than the biofiltration of methane alone, an elimination capacity for methane of 18.8 ± 1.0 g·m -3 ·h-1 was obtained with this system at an inlet load of 46.7 ± 0.9 g·m -3 ·h-1 . Pure fungal strains were used in an attempt to improve performance, but no significant increase in the methane removal efficiency was observed. For swine slurry treatment, average removal efficiencies of 67 ± 10 % for total organic carbon and 70 ± 7 % for ammonium were achieved. The influence of the slurry supply was analyzed and the ideal supply method found in this study was 6 doses of 50 ml per day. Pilot-scale tests carried out directly on a pig farm were used to validate the results obtained in the laboratory for the treatment of methane from swine house ventilation air. After a start-up period of 30 days, removal efficiencies up to 83% were observed for a methane inlet load of 1.6 ± 0.8 g·m -3 ·h-1 . Treated swine slurry was tested as a replacement for the synthetic nutrient solution, but due to inhibitory compounds in the treated slurry, the results were not satisfactory. For the simultaneous treatment, the methane removal efficiency only dropped from 58 ± 5% to 53 ± 8% when slurry was supplied to the biofilter. By integrating the results obtained in this study with modern farming techniques, the piggery industry could reduce its greenhouse gas emissions and treat part of the nutrients in swine slurry.||Résumé: L'industrie porcine est très importante au Canada, mais les conditions d'entreposage et l'épandage excessif du lisier de porc contribuent respectivement aux émissions de méthane, un puissant gaz à effet de serre, et à la pollution de l'eau. II existe de nombreuses techniques pour atténuer ces problématiques, mais le procédé de biofiltration s'impose comme étant capable de traiter le méthane et le lisier. Les objectifs principaux de cette thèse sont d'étudier la biofiltration du méthane à des concentrations représentatives de l'industrie porcine et d'effectuer le traitement simultané du méthane et du lisier de porc dans un même biofiltre. Des essais expérimentaux à l'échelle laboratoire ont permis de mieux comprendre la biofiltration du méthane issu de l'industrie porcine. En utilisant un lit filtrant inorganique, il a été possible d'atteindre une capacité d'élimination maximale de 14,5 ± 0.6 g[indice supérieur .]m[indices supérieurs -3.]h[indices supérieurs -1] pour une charge à l'entrée de 38 ± 1 g[indice supérieur .]m[indices supérieurs -3.]h[indices supérieurs -1]. L'efficacité d'enlèvement était relativement stable en fonction de la concentration de méthane et le biofiltre présentait une cinétique de premier ordre. En diminuant la concentration de nitrate dans la solution nutritive, une concentration de 0,1 gN[indice supérieur .]L[indice supérieur -1] s'est avérée suffisante pour assurer l'opération adéquate du biofiltre. De plus, en éliminant tout apport d'azote inorganique, la présence de microorganismes capables de fixer l'azote atmosphérique a été établie. Des bilans de masse sur le carbone et l'azote ont illustré que le carbone accumulé dans le biofiltre était utilisé pour la production de matières de stockage plutôt que pour la synthèse cellulaire. La viabilité de traiter simultanément le méthane et le lisier a été démontrée en utilisant un design innovateur de biofiltre pour éviter l'inhibition de la biodégradation du méthane par le lisier. Quoique généralement moins performant que la biofiltration du méthane seul, ce système a permis d'obtenir une capacité d'élimination de méthane de 18.8 ± 1.0 g[indice supérieur 1]m[indices supérieurs -3.]h[indices supérieurs -1] pour une charge de 46.7 ± 0.9 g[indice supérieur .]m[indices supérieurs -3.]h[indices supérieurs -1]. Des souches pures de champignons ont été utilisées afin d'améliorer la performance, mais aucun effet significatif n'a été observé. Pour le traitement du lisier de porc, des taux d'enlèvement moyens de 67 ± 10 % pour le carbone organique total et de 70 ± 7 % pour l'ammonium ont été obtenus. L'influence de l'alimentation en lisier a été analysée et le mode d'alimentation idéal fut de 6 doses de 50 ml par jour. Des essais à l'échelle pilote effectués directement sur une ferme porcine ont permis de valider les résultats obtenus au laboratoire pour le traitement du méthane dans l'air de ventilation d'un bâtiment d'élevage. Après une phase de démarrage de 30 jours, des efficacités d'épuration jusqu'à 83% ont été observées pour une charge de méthane à l'entrée de 1.6 ± 0.8 g[indice supérieur .]m[indices supérieurs -3.]h[indices supérieurs -1]. Du lisier de porc traité a été testé pour remplacer la solution nutritive synthétique, mais dû à la présence de composés inhibiteurs dans le lisier traité, les résultats obtenus n'étaient pas satisfaisants. Pour le traitement simultané, l'efficacité d'épuration du méthane a seulement diminué de 58 ± 5% a 53 ± 8 % lorsque le lisier a été alimenté au biofiltre. En intégrant les résultats de cette étude aux techniques agricoles modernes, l'industrie porcine pourrait réduire ses émissions de gaz à effet de serre et traiter une partie des nutriments du lisier de porc.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/6126
Date January 2012
CreatorsGirard, Matthieu
ContributorsHeitz, Michèle
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageEnglish
Detected LanguageFrench
TypeThèse
Rights© Matthieu Girard

Page generated in 0.0029 seconds