461 |
Interpreter Bio - Michelle DraperUnknown Date (has links)
The interpreter from the meeting provides a brief biography.
|
462 |
Interpreter Bio - Trenton MarshUnknown Date (has links)
The deaf interpreter from the meeting provides a brief biography.
|
463 |
Interpreter Bio and ReflectionsUnknown Date (has links)
The interpreter from the meeting provides some reflections and a brief biography.
|
464 |
Evaluation of the bio-oxidation of alkanesGrant, C. R. January 2012 (has links)
This thesis documents the progress made in utilising the alkane hydroxylase complex of P.putida GPo1 expressed in E.coli as a whole-cell biocatalyst for the oxidation of n-dodecane to 1-dodecanol. The process is of considerable interest due to the difficulty in performing the reaction using conventional chemistry and the large global market for fatty alcohols. The first results chapter compares the fermentative bio-oxidations using E.coli pGEc47ΔJ on n-octane and n-dodecane in a stirred tank reactor. The first reported conversion of n-dodecane in-vivo using this enzyme system in a recombinant host is reported. A number of bottlenecks were identified in this chapter; in particular, (i) poor induction of the alkS expression system with ndodecane, which controls the expression of the alk enzymes (ii) a suspected mass transport limitation (iii) substantial over-oxidation of the desired 1- dodecanol product to dodecanoic acid. The second results chapter firstly describes the development of a microwell platform in order to characterise the system more efficiently. Phase mixing limitations and organic phase spillage/evaporation were overcome in order to develop the microwell platform for the fermentative bio-oxidation which is the first reported microwell scale-down which matches the volumetric and specific rates achieved in a bioreactor for a substrate of such low solubility. Secondly, the microwell platform was used with design of experiments (DoE) methodology to rapidly and systematically characterise the overoxidation issue and identify appropriate solutions. Using this approach, substrate solubility was identified as the most critical factor affecting the tendency for overoxidation; the use of cosolvents to improve n-dodecane solubility in the aqueous phase was found to improve the 1-dodecanol yields and reduce dodecanoic acid yields. Oxygen availability and carbon source availability also proved important factors in the extent of overoxidation. Despite the improvements made the problem was only partially overcome and it was decided, based on the results, that biological engineering of the strain was necessary to remove the downstream aldehyde dehydrogenase alkH which was likely to be exacerbating overoxidation. The process of designing and constructing 3 new plasmids is described in results chapters four and five. These plasmids were designed with the aim of identifying the role of various alk proteins and ultimately identifying ways of improving substrate access to the enzyme and reducing overoxidation. It was found as a result of this work that overoxidation was reduced by removal of alkH but that the alkane-1-monooxygenase alkB was still capable of direct overoxidation to the dodecanoic acid even in the absence of alkH. More significantly, the function of an outer membrane protein of unknown function was also confirmed by this work. It was found to be essential for conversion of n-dodecane in-vivo but was also found to be toxic to the host organism when overexpressed. Finally, it was found that the alkane-1-monooxygenase enzyme system was also capable of C14 and C16 alkane oxidation; this has not previously been reported in literature in-vivo.
|
465 |
Language applications for UEFI BIOSLeara, William Daniel 06 October 2014 (has links)
The Unified Extensible Firmware Interface (UEFI) is the industry-standard Basic Input/Output System (BIOS) firmware specification used by modern desktop, portable, and server computers, and is increasingly being ported to today's new mobile form factors as well. UEFI is firmware responsible for bootstrapping the hardware, turning control over to an operating system loader, and then providing runtime services to the operating system. ANTLR (ANother Tool for Language Recognition) is a lexer-parser generator for reading, processing, executing, and translating structured text and binary files. It supersedes older technologies such as lex/yacc or flex/bison and is widely used to build languages and programming tools. ANTLR accepts a provided grammar and generates a parser that can build and walk parse trees. This report studies UEFI BIOS and compiler theory and demonstrates ways compiler theory can be leveraged to solve problems in the UEFI BIOS domain. Specifically, this report uses ANTLR to implement two language applications aimed at furthering the development of UEFI BIOS implementations. They are: 1. A software complexity analysis application for UEFI created that leverages ANTLR's standard general-purpose C language grammar. The complexity analysis application uses general-purpose and domain-specific measures to give a complexity score to UEFI BIOS modules. 2. An ANTLR grammar created for the VFR domain-specific language, and a sample application which puts the grammar to use. VFR is a language describing visual elements on a display; the sample application creates an HTML preview of VFR code without requiring a developer to build and flash a BIOS image on a target machine to see its graphical layout. / text
|
466 |
Bio-inspired adaptive sensingGonos, Theophile January 2012 (has links)
Sensor array calibration is a major problem in engineering, to which a biological approach may provide alternative solutions. For animals, perception is relative. The aim of this thesis is to show that the relativity of perception in the animal kingdom could also be applied to robotics with promising results. This thesis explores through various behaviours and environments the properties of homeostatic mechanisms in sensory cells. It shows not only that the phenomenon can solve partial failure of sensors but also that it can be used by robots to adapt to their (changing) environment. Moreover the system shows emergent properties as well as adaptation to the robot body or its behaviour. The homeostatic mechanisms in biological neurons maintain fi ring activity between predefi ned ranges. Our model is designed to correct out of range neuron activity over a relatively long period of time (seconds or minutes). The system is implemented in a robot’s sensory neurons and is the only form of adaptability used in the central network. The robot was fi rst tested extensively with a mechanism implemented for obstacle avoidance and wall following behaviours. The robot was not only able to deal with sensor manufacture defects, but to adapt to changing environments (e.g. adapting to a narrow environment when it was originally in an open world). Emergence of non-implemented behaviours has also been observed. For example, during wall following behaviour, the robot seemed, at some point, bored. It changed the direction it was following the wall. Or we also noticed during obstacle avoidance an emerging exploratory behaviour. The model has also been tested on more complex behaviours such as skototaxis, an escape response, and phonotaxis. Again, especially with skototaxis, emergent behaviours appeared such as unpredictability on where and when the robot will be hiding. It appears that the adaptation is not only driven by the environment but by the behaviour of the robot too. It is by the complex feedback between these two things that non-implemented behaviours emerge. We showed that homeostasis can be used to improve sensory signal processing in robotics and we also found evidence that the phenomenon can be a necessary step towards better behavioural adaptation to the environment.
|
467 |
Bio-inspired optical systemsLethbridge, Alfred John January 2013 (has links)
This thesis presents an investigation into some of the structural colours that are produced in nature. There are many animals and plants that produce structural colour, with a particularly high structural colour diversity in insects. Of the species that exhibit structural colours, three species are the subjects for investigation of this thesis. Those comprise a group of beetles from South-East Asia, Torynorrhina flammea, a buttery, Parides sesostris and a fruit, Margaritaria nobilis, both from South American rainforests. The structures that produce the vivid colours of these species were analysed using electron microscopy. This information aided the design and creation of three inorganic, synthetic replicas of the natural structures. The fruit of Margaritaria nobilis was structurally analysed, yielding the discovery of a novel multilayer fibre. These fibres were cylindrical in design and were found to be layered together producing the epidermis of the fruit. The multilayer structure produced a vivid blue colour appearance, which is believed to offer a selective advantage because the colour deceives birds into thinking that the fruit contains nutritious flesh. This selective advantage earns M. nobilis the label of mimetic fruit. The structure found within the M. nobilis fruit epidermis inspired the synthesis of a structure which comprises single cylindrical multilayer fibres. The synthetic fibres were manufactured from elastic materials which allow the structure to be deformed under strain and, therefore, a change in colour can be observed. As the structure was stretched, this made the layers get thinner and, therefore, the colour of the fibre blue-shifted. The fibre was able to be stretched to over twice its original length which yields a shift in peak reflected wavelength of over 200 nm. Four beetles from the Torynorrhina flammea species were investigated with the aim of replicating the nanostructures responsible for their colour appearance. The initial interest in the beetles came from their strikingly vivid colour appearances. The structure responsible for the vivid colours in all four of the subspecies is a multilayer with high structural order and over 100 laminae. Both of these attributes contribute to the saturation of the colours exhibited. The multilayer was found to be intersected by an array of rods, the long axis of which is orthogonal to the surface. The rods are believed to be the cause of an interesting diffraction phenomenon exhibited by the beetles. Using imaging scatterometry, the structure was found to diffract the colour produced by the multilayers into an annulus around a specularly reflected white spot. This inspired the synthesis of a multilayer permeated with an array of holes with the aim of replicating a system that could reproduce the annular pattern of colour reflection. The initial synthesised system comprised a quarter-wave stack with a perfectly ordered hexagonal array of holes permeating the surface orthogonally. The sample displayed the scattering characteristics of a hexagonal array, and the reflection spectra of the multilayer stack. When disordered hexagonal arrays were milled into the structure with a focussed ion beam, the scattering pattern started to show more of the green colour from the multilayer and less of the ordered scattering pattern. The highly disordered, synthesised structure displayed no hexagonal scattering pattern, but instead it showed a highly scattered bluish-green colouration. One sample was created by directly mapping out the array of holes using an image of the original array from one of the beetle samples. This sample was expected the same annular diffraction pattern as the beetles, however, the sample instead exhibited the same scattering pattern as the highly disordered array. Some structurally coloured systems in nature have more than one light scattering structure, all of which contribute to the overall colour of the system. For complicated systems such as this, it is necessary to devise a technique to characterise the individual scattering structures separately. One such species that displays a complex, multicomponent system is Parides sesostris. The male of the species displays bright green patches on the dorsal side of the forewings which are made up of thousands of green wing scales. These green scales contain a 3D gyroid poly-crystal at centre with a membrane layer surrounding the underside of each scale and a scattering structure on top. Using focussed ion beam milling techniques allowed the individual characterisation of each of these structures. The gyroid poly-crystal was found to reflect not green but blue wavelengths. This led to the discovery by another group [1] that the scales contain at least one type of fluorophore. The removal of the membrane structure and some of the gyroid poly-crystal from the base of the scale resulted in the change of the overall scale structure from green to cyan. This suggests that the membrane maybe a significant source of fluorescence. Computational modelling, without fluorescence, suggests that the addition of the membrane layer to the gyroid does not shift the band-gap wavelengths; however, the overall reflection intensity does increase. The scattering structure on the top side of each scale is comprised a bi-grating which sits on top of the 3D gyroid structure. The long periodicity of the bi-grating protrudes above the surface, resulting in the very top layer of the scale to be a mono-grating. This whole structure decreases the angular-dependence of the colour by efficiently scattering the incident light into the gyroid and also scattering the reflected light from the gyroid, resulting in a double-scattering. FIB-milling was used to isolate the scattering part of the structure. Analysis of this component of the structure revealed that it was not a source of the green colour itself; however, it did show the characteristic scattering pattern of a mono-grating. The small periodicity of the bi-grating did not produce a scattering pattern since the periodicity is too small to produce optical diffraction at normal incidence. To characterise the effect of the fluorophores, the whole scale structure was photo-bleached using ultra-violet radiation for two months with the aim of destroying the fluorophores contained within the structure. The expected result occurred which was the blue-shifting of the peak reflected wavelengths. However, it could not be confirmed whether or not the photo-bleaching reduced the physical size of the light scattering structures which would, in theory, result in a blue-shift of the peak reflected wavelengths. The male P. sesostris green wing scales were also the subject for investigation for trying to make inorganic replicas of the gyroid-polycrystal. A surface sol-gel coating process was utilised to coat the green wing scales with titania. This coating process was performed using a few different methods. Half of the samples were coated with TiO2 and the other half with tin-doped TiO2. Half of each of these samples had their surfaces dendritically amplified before the coating processes and the other half were left untreated. The samples were coated with 25 surface sol-gel (SSG) cycles of each treatment at a time. After each 25 cycle treatment the samples were optically characterised. The total number of cycles applied to the samples at the end was 150. The addition of layers of titania resulted in a general red-shift that was higher for the tin-doped titania samples than for the titania samples. Another general trend found was that the samples that had their surfaces dendritically amplified, produced a lower red-shift in peak wavelength. This was contrary to the hypothesis that the amplification process was supposed to aid the SSG coating process and, therefore, increases the red-shift in peak wavelength.
|
468 |
Optimisation of defoamer in a bio-reactorMangudu, James January 2017 (has links)
A research report submitted to the Faculty of Engineering and the Built Environment, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering, 2017 / The success rate in the use of defoamers for controlling foam lies in finding the optimal
concentration of defoamer for each foam type. Due to the dynamic nature of the foaming
conditions in bio-reactors, using one concentration of defoamer across all foaming conditions
may not be efficient. Where the plant design requires the use of defoamers for foam control,
finding the right defoamer concentration ideal for each foam type becomes key. The objective
of this study was to examine the following questions: first, can a more dilute form of Zeta
Airspel 300® defoamer achieve complete foam knock-down and lengthy foam stay down times
in the bio-reactor? And second, can this be achieved at a lesser cost than using 100%
concentrated defoamer. To examine these questions, two sets of experiments were performed,
batch experiments and plant trials, with defoamer concentrations ranging from 1%-100%.
Defoamer samples with 40% concentration and above managed to completely reduce foam in
both the batch experiment and in the bio-reactor. The rates of foam decay were faster with
increase in defoamer concentration and foam suppression times were lengthier with increase in
defoamer concentration. The economic evaluation of the plant trial results showed that 90%
defoamer concentration was the least costly option of all. This discovery suggests that different
defoamer concentrations can be used optimally depending on foaming conditions present in the
bio-reactor at each given time. Future studies should focus on conducting longer plant trials
during periods of different foaming conditions to be able to develop a model that predicts the
most cost effective defoamer concentration for each particular foam type. / XL2018
|
469 |
Hodding Carter: A bio-bibliographyUnknown Date (has links)
"The purpose of this paper is to present the life of Hodding Carter, a bibliography of his published books, and an analysis of his contribution as a writer today, as interpreted by reviewers whose criticisms were identified through the Book Review Digest"--Introduction. / Carbon copy of typescript. / "August, 1958." / "Submitted to the Graduate Council of Florida State University in partial fulfillment of the requirements for the degree of Master of Arts." / Advisor: Sara K. Srygley, Professor Directing Paper. / Includes bibliographical references.
|
470 |
William Maxwell: A bio-bibliographyUnknown Date (has links)
"This paper gives a brief account of the life of William Maxwell under such aspects as childhood, education, travels, writings and awards. A discussion of his novels presented in the order of publication will include critical reaction to Mr. Maxwell's skill as a writer and his themes. Following a summary and conclusions, an appendix will give a chronological list of Mr. Maxwell's books with sources of reviews, a list of his short stories and articles with annotations for those materials available, and a general bibliography of the major sources used"--Introduction. / Typescript. / "August, 1957." / "Submitted to the Graduate Council of Florida State University in partial fulfillment of the requirements for the degree of Master of Arts." / Advisor: Ruth H. Rockwood, Professor Directing Paper. / Includes bibliographical references (leaves 72-73).
|
Page generated in 0.4399 seconds