81 |
On paracompactnessNtantu, Ibula January 1982 (has links)
This thesis is an investigation of the concept of paracompactness. It presents the history of paracompactness, analyzes this concept from several diverse points of view and tries to establish the relationship between these different views. The starting point is the work of Tukey [40]. The important problem of the metrization of topological spaces is presented as an application of the concept of paracompactness. / Master of Science
|
82 |
Acoustic theory of sonic boom propagation in an inhomogeneous atmosphereLansing, Donald Leonard January 1962 (has links)
The thesis develops the acoustic theory of the propagation of the shook waves produced by an aircraft in supersonic flight through an atmosphere in which the speed of sound decreases linearly with altitude. The problem is first studied in terms of the geometry of the rays along which the shock wave travels away from its point of origin and into the surrounding atmosphere. The equation of the rays is derived and certain important properties of the rays are discussed. It is shown how these results lead to a systematic graphical procedure for determining the location of the shock wave of a maneuvering aircraft. The theory is then considered in terms of the geometry of the "wave fronts" which represent the instantaneous positions of the individual disturbances created along the flight path. The shape of a wave front and its growth with time are determined. From this the equations for the envelope of a one-parameter family of wave fronts are obtained. The envelope equations are solved in parametric form and several examples are worked out which show some effects of flight maneuvers upon shock wave propagation. / M.S.
|
83 |
Notes on generalized Fourier series with application to gravitational field determinationBlackshear, Walter Thomas January 1967 (has links)
Let{(}φ<sub>n</sub>(x)} be an orthonormal system in the set of Lebesgue square integrable functions L². Let f𝜖L². The generalized Fourier series of f with respect to {(}φ<sub>n</sub>(x)} is the series ∑<sub>n=0</sub><sup>∞</sup> (f, φ<sub>n</sub>) φ<sub>n</sub>(x), where (f, φ<sub>n</sub>) is the inner product of the functions f an φ<sub>n</sub>. The e existence of a complete orthonormal system in L² is proven. Conditions for convergence of the generalized Fourier series are presented. A discussion of orthogonal polynomials with special emphasis on the Jacobi polynomial systems is presented. A least squares, differential correction, discrete observation procedure is employed to solve the potential equation with boundary conditions in tenns of three special Jacobi systems. / M.S.
|
84 |
Approximate solutions to the wave equation for a medium with one discontinuityWeiss, Winfried R. E. January 1983 (has links)
This thesis deals with a particle limit for the n dimensional wave equation and shows that there are asymptotic solutions for certain pulses in the high-frequency limit. These pulses are shown to propagate along rays predicted by geometrical optics. The solutions are computed up to an error which approaches zero as the pulse approaches the particle limit. The method gives a closed solution to the question of where the energy propagates. We assume that the n dimensional space is divided into two halfspaces with two different wave speeds and that these two halfspaces have an interface where the wave speed is not continuous. / M.S.
|
85 |
Use of conformal mapping in measures of approximationKlieforth, Alexander Courtney January 1970 (has links)
This thesis constitutes a study in the field of approximation theory and is restricted to sets defined on the complex plane. The main objective is to present means that have been used to determine whether a sequence of polynomials can be considered as being uniformly convergent to a given analytic function and if convergence can be considered stronger than uniform.
Background material is given in Chapter I. This includes definitions of point sets and of measures of approximation. Also basic theorems concerning both approximation and conformal mapping are given.
In Chapter II properties of conformal mappings are established. The theorems discussed lead to a statement of necessary and sufficient conditions for a mapping of a simply connected region onto the interior of the unit circle to be homeomorphic on the closure of the region. The bulk of the work presented in Chapter II is based on definitions and theorems given by Caratheodory and Markushevich.
The last chapter puts to use the theorems given in Chapters I and II to prove Walsh's Theorem and Farrell's Theorem. Other theorems originally presented by Walsh and Mergelyan are also discussed in Chapter III. The thesis concludes with examples of sequences uniformly convergent but not convergent in a given measure of approximations in order to show the reader that the latter property is stronger. / M.S.
|
86 |
AN INTRODUCTION TO THE (META-) THEORY OF STRUCTURESDUSKIN, JOHN WILLIFORD 06 1900 (has links)
This thesis is intended as a self-contained,
expository introduction to material found in chapter IV of Bourbaki’s
Theorie des Ensembles. With a minimum of external reference, it
presents all relevant logical and set-theoretic background material
and then develops and extends the notions of "species of structure”,
"intrinsic terms”, "canonical mappings", "processes of deduction”,
"morphism”, etc. found in this work. / Thesis / Master of Science (MS)
|
87 |
Perfect numbers and other numbers defined by the sum of their divisorsHawkes, Kenneth Eugene January 1975 (has links)
Perfect, abundant, and deficient numbers are defined in terms of the sum of the divisors function. The history and the discovery of perfect numbers is discussed, and the question of the existence of an odd perfect number is considered.
There is a discussion of amicable pairs and multiply perfect numbers. Other numbers which are defined by the sum of their divisors are also introduced. / M.S.
|
88 |
A framework for homotopy theory and differential geometry in the category of Frölicher spacesDugmore, Brett 12 January 2017 (has links)
No description available.
|
89 |
Sammenhenger mellom elevers forestillinger om forståelse i matematikk og undervisningen de erfarer / Correlations between Students' Beliefs about Understanding in Mathematics, and the Teaching they Experience.Monsen, Renate, Sandmark, Linda Ytterdahl January 2010 (has links)
<p>I masteroppgaven fokuseres det på elevers forestillinger om forståelse, og på matematikkundervisning. Målet med studien er å få dypere innsikt i sammenhenger mellom elevers forestillinger om forståelse i matematikk, og undervisningen de erfarer. Studiens overordnede problemstilling er: Hvilke sammenhenger kan det være mellom elevers forestillinger om forståelse i matematikk og matematikkundervisningen de erfarer? I studien benyttes et tidligere utviklet analyseverktøy for å beskrive elevers forestillinger om forståelse. Analyseverktøyet tar utgangspunkt i skillet mellom instrumentell og relasjonell forståelse, som har blitt nyansert ved fire aktuelle tråder i matematisk kyndighet. De aktuelle trådene er 1) forståelse, 2) regneferdigheter, 3) strategisk kompetanse og 4) resonnering. Studien tar utgangspunkt i to matematikklasser der elevene erfarer ulik matematikkundervisning. Elever i den ene klassen erfarer tradisjonell undervisning, mens elevene i den andre klassen erfarer en mer undersøkende form for undervisning. Undervisningen observeres for å gi et bilde av hvilke tråder i matematisk kyndighet som vektlegges. Et utvalg på fire elever fra hver klasse intervjues for å undersøke hvilke forestillinger de kan ha om forståelse i matematikk. Datamaterialet fra observasjonen og intervjuene analyseres ved hjelp av analyseverktøyet. Resultatene fra studien indikerer at det kan være sammenhenger mellom forestillinger elever har om forståelse i matematikk og undervisningen de erfarer. Analysen av datamaterialet tyder på at i klasserommet preget av tradisjonell undervisning, fokuserer læreren på den instrumentelle delen av regneferdigheter. Lærerens fokus gjenspeiles i de fire elevenes forestillinger om forståelse i den forstand at den instrumentelle delen av regneferdigheter inngår i deres forestillinger. Analysen tyder på at i klasserommet som preges av undersøkende undervisning, vektlegger læreren trådene forståelse, strategisk kompetanse og resonnering. De fire elevene som erfarer slik undervisning, har forestillinger om forståelse i matematikk som har likhetstrekk med de tre nevnte trådene.</p>
|
90 |
Sammenhenger mellom elevers forestillinger om forståelse i matematikk og undervisningen de erfarer / Correlations between Students' Beliefs about Understanding in Mathematics, and the Teaching they Experience.Monsen, Renate, Sandmark, Linda Ytterdahl January 2010 (has links)
I masteroppgaven fokuseres det på elevers forestillinger om forståelse, og på matematikkundervisning. Målet med studien er å få dypere innsikt i sammenhenger mellom elevers forestillinger om forståelse i matematikk, og undervisningen de erfarer. Studiens overordnede problemstilling er: Hvilke sammenhenger kan det være mellom elevers forestillinger om forståelse i matematikk og matematikkundervisningen de erfarer? I studien benyttes et tidligere utviklet analyseverktøy for å beskrive elevers forestillinger om forståelse. Analyseverktøyet tar utgangspunkt i skillet mellom instrumentell og relasjonell forståelse, som har blitt nyansert ved fire aktuelle tråder i matematisk kyndighet. De aktuelle trådene er 1) forståelse, 2) regneferdigheter, 3) strategisk kompetanse og 4) resonnering. Studien tar utgangspunkt i to matematikklasser der elevene erfarer ulik matematikkundervisning. Elever i den ene klassen erfarer tradisjonell undervisning, mens elevene i den andre klassen erfarer en mer undersøkende form for undervisning. Undervisningen observeres for å gi et bilde av hvilke tråder i matematisk kyndighet som vektlegges. Et utvalg på fire elever fra hver klasse intervjues for å undersøke hvilke forestillinger de kan ha om forståelse i matematikk. Datamaterialet fra observasjonen og intervjuene analyseres ved hjelp av analyseverktøyet. Resultatene fra studien indikerer at det kan være sammenhenger mellom forestillinger elever har om forståelse i matematikk og undervisningen de erfarer. Analysen av datamaterialet tyder på at i klasserommet preget av tradisjonell undervisning, fokuserer læreren på den instrumentelle delen av regneferdigheter. Lærerens fokus gjenspeiles i de fire elevenes forestillinger om forståelse i den forstand at den instrumentelle delen av regneferdigheter inngår i deres forestillinger. Analysen tyder på at i klasserommet som preges av undersøkende undervisning, vektlegger læreren trådene forståelse, strategisk kompetanse og resonnering. De fire elevene som erfarer slik undervisning, har forestillinger om forståelse i matematikk som har likhetstrekk med de tre nevnte trådene.
|
Page generated in 0.2609 seconds