131 |
A systematic study of transport, magnetic and thermal properties of layered iridatesKorneta, Oleksandr B. 01 January 2012 (has links)
A unique feature of the 5d-iridates is that the spin-orbit interaction (SOI) and Coulomb interactions U are of comparable strength and therefore compete vigorously. The relative strength of these interactions stabilizes new exotic ground states that provide a fertile ground for studying new physics. SOI is proportional to Z^4 (Z is the atomic number), and it is now recognized that strong SOI can drive novel narrow-gap insulating states in heavy transition metal oxides such as iridates. Indeed, strong SOI necessarily introduces strong lattice degrees of freedom that become critical to new physics in the iridates. This dissertation thoroughly examines a wide array of newly observed novel phenomena induced by adjusting the relative strengths of U and SOI interactions via slight chemical doping and application of hydrostatic pressure in the layered iridates, particularly, BaIrO3 and Sr2IrO4.
|
132 |
The development and implementation of electromechanical devices to study the physical properties of Sr2IrO4 and TaS3Nichols, John A 01 January 2012 (has links)
Transition metal oxides (TMO) have proven to exhibit novel properties such as high temperature superconductivity, magnetic ordering, charge and spin density waves, metal to insulator transitions and colossal magnetoresistance. Among these are a spin-orbit coupling (SOC) induced Mott insulator Sr2IrO4. The electric transport properties of this material remain finite even at cryogenic temperatures enabling its complex electronic structure to be investigated by a scanning tunneling microscope. At T = 77 K, we observed two features which represent the Mott gap with a value of 2D ~ 615 meV. Additionally an inelastic loss feature was observed inside this gap due to a single magnon excitation at an energy of ~ 125 meV. These features are consistent with similar measurements with other probes. In addition to these features, at T = 4.2 K lower energy features appear which are believed to be due to additional magnetic ordering. Another material that exhibits a unique physical behavior is the sliding charge density wave (CDW) material TaS3. It is a quasi-one dimensional material that forms long narrow ribbon shaped crystals. It exhibits anomalies including non-ohmic conductivity, a decrease in the Young’s modulus, a decrease in the shear modulus and voltage induced changes in the crystal’s overall length. In addition, we have observed the torsional piezo-like response, voltage induced torsional strain (VITS), in TaS3 which was first discovered by Pokrovskii et. al. in 2007. Our measurements were conducted with a helical resonator. The VITS response has a huge effective piezoelectric coefficient of ~ 104 cm/V. In addition we have concluded that the VITS is a very slow response with time constants of ~ 1 s near the CDW depinning threshold, that these time constants are dependent on the CDW current, and we suggest that the VITS is due to residual twists being initially present in the crystal.
|
133 |
DECIPHERING THE ARRANGEMENT OF DUST IN THE CLUMPY TORI OF ACTIVE GALACTIC NUCLEIThompson, Grant David 01 January 2012 (has links)
In the framework of active galactic nuclei (AGNs), a galaxy’s supermassive black hole is surrounded by a dusty torus whose clumpy configuration allows for either direct or obscured views toward the central engine. Viewing AGNs from different angles gives rise to a variety of AGN classifications; for example, the generic Type 1 AGN class requires the detection of optically broad emission lines, which arise from quickly moving material within the torus, whereas Type 2 AGNs lack these observations. While these viewing angles are not directly observable, synthetic torus models generated with CLUMPY provide a means to determine them along with other parameters that describe the nature and characteristics of the torus in general. Employing CLUMPY models with mid-infrared spectroscopic observations of a large sample of both Type 1 and Type 2 AGNs allows us to acquire a further understanding of the clumpy torus structure and its viewing angles.
|
134 |
MAGNETIC FIELDS AND OTHER PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUMKiuchi, Furea 01 January 2012 (has links)
This document consists of two very different projects but the common thread is in the interest of magnetic fields. It describes the effect of magnetic fields in two Interstellar Medium regions in the Galaxy. Electromagnetic force is one of the four fundamental forces in physics. It is not known where magnetic field has initially risen in the Universe, but what is certain is that it has significant effect in the dynamics of star formation and galaxy formation. The studies aim to better understand the effects of field in an active star forming region and in the halo of the Galaxy. We observed the HI 21 cm spectral line via the Zeeman effect in attempt to detect line-of-sight magnetic field strengths in both of the projects. For the star forming region project in Chapter 2, towards the Eagle Nebula, an upper limit of the field strength was determined. From the observational results, physical conditions of the region were modeled. For the second project in Chapter 3, we attempted to detect magnetic fields via Zeeman effect towards non galactic disk objects. All of the observed positions have radial velocities that cannot be explained by the simple galactic rotation. Hence, they are considered to be non galactic disk sources and often grouped as High Velocity Clouds. With a unique observational technique and analysis, we derived the best fit line-of-sight magnetic fields. A particular interest to us is the Smith Cloud. From the detection of magnetic field, we attempted to estimate the density of the ambient medium in the halo, which will be useful for studying the galaxy formation.
|
135 |
MAGNETIC AND ORBITAL ORDERS COUPLED TO NEGATIVE THERMAL EXPANSION IN MOTT INSULATORS, CA2RU1-XMXO4 (M = 3D TRANSITION METAL ION)Qi, Tongfei 01 January 2012 (has links)
Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357K, followed by a well-separated antiferromagnetic order at TN = 110 K. Slightly substituting Ru with a 3d transition metal ion M effectively shifts TMI and induces exotic magnetic behavior below TN. Moreover, M doping for Ru produces negative thermal expansion in Ca2Ru1-xMxO4 (M = Cr, Mn, Fe or Cu); the lattice volume expands on cooling with a total volume expansion ratio reaching as high as 1%. The onset of the negative thermal expansion closely tracks TMI and TN, sharply contrasting classic negative thermal expansion that shows no relevance to electronic properties. In addition, the observed negative thermal expansion occurs near room temperature and extends over a wide temperature interval. These findings underscores new physics driven by a complex interplay between orbital, spin and lattice degrees of freedom. These materials constitute a new class of Negative Thermal Expansion (NTE) materials with novel electronic and magnetic functions.
|
136 |
MAGNETIC PROPERTIES OF Nb/Ni SUPERCONDUCTING / FERROMAGNETIC MULTILAYERSKryukov, Sergiy A 01 January 2012 (has links)
Magnetic properties of Nb/Ni superconducting (SC) / ferromagnetic (FM) multilayers exhibit interesting properties near and below SC transition. A complex Field (H) – Temperature (T) phase boundary is observed in perpendicular and parallel orientation of ML with respect to DC field. We address the critical need to develop methods to make reliable magnetic measurements on SC thin films and ML, in spite of their extreme shape anisotropy and the strong diamagnetic response of the SC state.
Abrupt, highly reproducible “switching” of the SC state magnetization near the normal-state FM coercive fields has been observed in Nb/Ni ML. The SC penetration depth l(Nb) > the SC coherence length xo(Nb) » 40 nm >> the FM layer thickness y(Ni) = 5 nm, abrupt magnetic reversals might be driven by strong supercurrent densities (J x M torques) that have the potential to flow into the Ni layers. Alternatively, sharp magnetization anomalies also can result from strong flux pinning by the periodic layered structure of ML, including “lock-in” of quantized flux lines (FL) parallel to the ML plane. Strong confinement of the supercurrents within ML planes might also lead to various phase transitions of the FL lattice (FLL) composed of one-dimensional chains and other unusual structures.
Possible mechanisms for the switching anomalies must be evaluated while considering other experimental properties of Nb(x)/Ni(y) ML:
1) The upper critical magnetic field Hc2(T) exhibits a highly unusual anisotropy where the SC transition temperature Tc (H®0) for DC field H ^ ML plane exceeds the value for H || ML by ~ 0.5 K.
2) Nb/Ni ML samples do not consistently exhibit magnetic signatures for the onset of superconductivity, depending on the details of the sample mounting procedure and the AC or DC method used in SQUID magnetometry experiments.
3) Unusual “wiggles” or oscillations of order 10-30 mK were observed in Hc2(T) in AC SQUID experiments with H || ML and can be even larger (~0.16 K), depending upon the AC drive amplitude ho and frequency f .
|
137 |
TIME-DEPENDENT SYSTEMS AND CHAOS IN STRING THEORYGhosh, Archisman 01 January 2012 (has links)
One of the phenomenal results emerging from string theory is the AdS/CFT correspondence or gauge-gravity duality: In certain cases a theory of gravity is equivalent to a "dual" gauge theory, very similar to the one describing non-gravitational interactions of fundamental subatomic particles. A difficult problem on one side can be mapped to a simpler and solvable problem on the other side using this correspondence. Thus one of the theories can be understood better using the other.
The mapping between theories of gravity and gauge theories has led to new approaches to building models of particle physics from string theory. One of the important features to model is the phenomenon of confinement present in strong interaction of particle physics. This feature is not present in the gauge theory arising in the simplest of the examples of the duality. However this N = 4 supersymmetric Yang-Mills gauge theory enjoys the property of being integrable, i.e. it can be exactly solved in terms of conserved charges. It is expected that if a more realistic theory turns out to be integrable, solvability of the theory would lead to simple analytical expressions for quantities like masses of the hadrons in the theory. In this thesis we show that the existing models of confinement are all nonintegrable--such simple analytic expressions cannot be obtained.
We moreover show that these nonintegrable systems also exhibit features of chaotic dynamical systems, namely, sensitivity to initial conditions and a typical route of transition to chaos. We proceed to study the quantum mechanics of these systems and check whether their properties match those of chaotic quantum systems. Interestingly, the distribution of the spacing of meson excitations measured in the laboratory have been found to match with level-spacing distribution of typical quantum chaotic systems. We find agreement of this distribution with models of confining strong interactions, conforming these as viable models of particle physics arising from string theory.
|
138 |
ZEEMAN EFFECT STUDIES OF MAGNETIC FIELDS IN THE MILKY WAYThompson, Kristen Lynn 01 January 2012 (has links)
The interstellar medium (ISM) of our Galaxy, and of others, is pervaded by ultra low-density gas and dust, as well as magnetic fields. Embedded magnetic fields have been known to play an important role in the structure and dynamics of the ISM. However, the ability to accurately quantify these fields has plagued astronomers for many decades. Unfortunately, the experimental techniques for measuring the strength and direction of magnetic fields are few, and they are observationally challenging. The only direct method of measuring the magnetic field is through the Zeeman effect.
The goal of this dissertation is to expand upon the current observational studies and understanding of the effects of interstellar magnetic fields across various regions of the Galaxy. Zeeman effect observations of magnetic fields in two dynamically diverse environments in the Milky Way are presented: (1) An OH and HI absorption line study of envelopes of molecular clouds distributed throughout the Galaxy, and (2) A study of OH absorption lines toward the Galactic center region in the vicinity of the supermassive black hole Sgr A*.
We have executed the first systematic observational survey designed to determine the role of magnetic fields in the inter-core regions of molecular clouds. Observations of extragalactic continuum sources that lie along the line-of-sight passing through Galactic molecular clouds were studied using the Arecibo telescope. OH Zeeman effect observations were combined with estimates of column density to allow for computation of the mass-to-flux ratio, a measurement of the gravitational to magnetic energies within a cloud. We find that molecular clouds are slightly subcritical overall. However, individual measurements yield the first evidence for magnetically subcritical molecular gas.
Jansky VLA observations of 18 cm OH absorption lines were used to determine the strength of the line-of-sight magnetic field in the Galactic center region. This study yields no clear detections of the magnetic field and results that differ from a similar study by Killeen, Lo, & Crutcher (1992). Our results suggest magnetic fields no more than a few microgauss in strength.
|
139 |
Voltage Modulated Infrared Reflectance Study of Soluble Organic Semiconductors in Thin Film TransistorsBittle, Emily Geraldine 01 January 2013 (has links)
Soluble organic semiconductors have attracted interest due to their potential in making flexible and cheap electronics. Though their use is being implemented in electronics today, the conduction mechanism is still under investigation. In order to study the charge transport, this study examines the position, voltage, and frequency dependence of charge induced changes in far infrared absorption in soluble organic semiconductors in thin-film transistor structures. Measurements are compared to a simple model of a one-dimensional conductor which gives insight into the charge distribution and timing in devices. Main results of the study are dynamic measurements of charge taken by varying the frequency of the applied gate voltage while observing signal at one position within the transistor; mobility values obtained from a comparison to the one-dimensional model compare well with standard current-voltage measurements. Two small molecule soluble organic semiconductors were studied: 6,13 bis(triisopropylsilylethynyl)-pentacene and fluorinated 5,11 bis(triethylsilylethynyl) anthradithiophene.
|
140 |
DEVELOPMENT OF A PATIENT SPECIFIC IMAGE PLANNING SYSTEM FOR RADIATION THERAPYThapa, Bishnu Bahadur 01 January 2013 (has links)
A patient specific image planning system (IPS) was developed that can be used to assist in kV imaging technique selection during localization for radiotherapy. The IPS algorithm performs a divergent ray-trace through a three dimensional computed tomography (CT) data set. Energy-specific attenuation through each voxel of the CT data set is calculated and imaging detector response is integrated into the algorithm to determine the absolute values of pixel intensity and image contrast. Phantom testing demonstrated that image contrast resulting from under exposure, over exposure as well as a contrast plateau can be predicted by use of a prospective image planning algorithm. Phantom data suggest the potential for reducing imaging dose by selecting a high kVp without loss of image contrast. In the clinic, image acquisition parameters can be predicted using the IPS that reduce patient dose without loss of useful image contrast.
|
Page generated in 0.2014 seconds