• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95662
  • 44430
  • 27819
  • 17376
  • 7732
  • 5764
  • 4255
  • 2359
  • 2359
  • 2359
  • 2359
  • 2359
  • 2352
  • 1511
  • Tagged with
  • 46289
  • 15669
  • 11738
  • 10991
  • 8697
  • 8074
  • 8072
  • 6163
  • 6151
  • 5305
  • 5272
  • 5192
  • 5139
  • 5046
  • 4773
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Optical Polarimetry and Gamma-Ray Observations of a Sample of Radio-Loud Narrow Line Seyfert 1 Galaxies

Eggen, Joseph 12 August 2014 (has links)
The recent discovery of a new population of Active Galactic Nuclei (AGN) – the Radio Loud Narrow Line Seyfert 1 (RL NLS1) galaxies – at g-ray energies by Fermi has prompted intense interest among researchers, as evidence mounts that these objects may in fact compose a new class of blazars. If RL NLS1s are indeed a new class of blazars, or at least analogous to them, then the detection of certain blazar-like properties would be expected. These properties include significant variability at all wavelengths across the electromagnetic spectrum and on timescales from minutes to years, significant & variable polarization in the radio and optical regimes, significant & variable high-energy emissions (especially in the g-ray regime), and a double-peaked structure of their spectral energy distributions. This dissertation seeks to characterize several of these properties for RL NLS1s as a class. These include the degree to which these objects are polarized and the variability of this property, the detection and characterization of these sources at g-ray energies with the Large Area Telescope aboard the Fermi spacecraft, and the degree to which these properties are interdependent. A photopolarimetric survey (the first of its kind for this class of objects) and g-ray monitoring program were conducted by the author in order to obtain the data necessary for this project. The measurements obtained via these observations are used to characterize this interesting class of objects with respect to a sample of blazars. In general, it was found that the polarizations of these objects fall between radio-quiet NLS1s and FSRQ-type blazars, and were most similar to HBL-type blazars. The 7 RL NLS1s in this sample that had been detected above a Test Statistic (TS) of 25 by Fermi/LAT were most similar to FSRQs, while 9 objects detected in the interval 9 < TS < 25 shared several properties with HBLs. Two RL NLS1s - J1443+4725 and J1644+2619 - are identified as high-confidence (TS > 25) g-ray sources for the first time, bringing the total number of members of this class firmly detected at g-ray energies to 8. The gamma-ray spectra of RL NLS1s are similar to FSRQs, though some have steeper spectra.
142

Detection of Microvariability in a New Class of Blazar-Like AGN

Maune, Jeremy 12 August 2014 (has links)
Recent research has lead to the possible discovery of a new class of gamma-ray emitting ac- tive galactic nuclei (AGN). These objects – the very radio-loud narrow-line Seyfert 1 galaxies (NLSy1s)– demonstrate observational features suggesting that they are similar to blazars. One of the key characteristics of blazars is the presence of high-amplitude optical microvariability. While this phenomenon has been investigated in individual objects, no study of the intra-night variability of radio-loud NLSy1s as a class has previously been available. This dissertation presents a sys- tematic search for optical variability in a sample of 33 radio-loud NLSy1s. It was found that 26 objects demonstrated microvariations. However, only 9 objects did so with duty cycles comparable to blazars, and only 7 of these 9 objects — J0706+3901, J0849+5108, J0948+0022, J1246+0238, PKS 1502+036, J1644+2619, and IRAS 20181-2244 — demonstrated microvariability at compa- rable amplitudes. Two objects stand out as exceptional sources. J0849+5108 was found to have a duty cycle of ~90% and was observed to undergo an enormous 4-magnitude optical flare in a two-month time span. The object has not been reported to have undergone such an event since 1975. The second object, J0948+0022, is the class prototype. High cadence data indicates that J0948+0022 has a remarkably rapid doubling time scale of ~40 minutes, and it was seen to vary by over 0.9 magnitudes within an individual night. Attempts to correlate microvariability to radio loudness, gamma-ray loudness, and other parameters were largely unsuccessful. However, it was found that only radio-loud NLSy1s that were detected at gamma-ray energies demonstrated microvariability at blazar-like duty cycles. Additionally, an analysis of the frequency of microvariations at various amplitudes suggests that the sample of radio-loud NLSy1s presented in this study share a parent population identical to low energy peaked BL Lac-type (LBL) blazars. This is in agreement with the work of astronomers such as Abdo et al. 2009, who have created spectral energy distributions for a few radio-loud NLSy1s and found them to resemble those of LBLs. Blazar-like variability was found in multiple objects with radio loudnesses of log(R) < 2, suggesting that even moderately radio-loud NLSy1s may be blazar-like objects.
143

Determination of Stellar Parameters through the Use of All Available Flux Data and Model Spectral Energy Distributions

Ekanayake, Gemunu 01 January 2017 (has links)
Basic stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity plays a vital role in the characterization of various stellar populations in the Milky Way. The Stellar parameters can be measured by adopting one or more observational techniques, such as spectroscopy, photometry, interferometry, etc. Finding new and innovative ways to combine these observational data to derive reliable stellar parameters and to use them to characterize some of the stellar populations in our galaxy is the main goal of this thesis. Our initial work, based on the spectroscopic and photometric data available in literature, had the objective of calibrating the stellar parameters from a range of available flux observations from far-UV to far-IR. Much effort has been made to estimate probability distributions of the stellar parameters using Bayesian inference, rather than point estimates. We applied these techniques to blue straggler stars (BSSs) in the galactic field, which are thought to be a product of mass transfer mechanism associated with binary stars. Using photometry available in SDSS and GALEX surveys we identified 85 stars with UV excess in their spectral energy distribution (SED) : indication of a hot white dwarf companion to BSS. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed algorithms that could fit binary model atmospheres to the observed SED. The WD mass distribution peaks at 0.4M , suggests the primary formation channel of field BSSs is Case-B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of binary mass transfer efficiency β ~ 0.5. Next, we have focused on the Canis Major overdensity (CMO), a substructure located at low galactic latitude in the Milky Way, where the interstellar reddening (E(B-V )) due to dust is significantly high. In this study we estimated the reddening, metallicity distribution and kinematics of the CMO using a sample of red clump (RC) stars. The averageE(B-V)(~0.19)is consistent with that measured from Schlegel maps (Schlegal et.al. 1998). The overall metallicity and kinematic distribution is in agreement with the previous estimates of the disk stars. But the measured mean alpha element abundance is relatively larger with respect to the expected value for disk stars.
144

MAGNETIC FIELD NON-UNIFORMITY CHALLENGES IN NEUTRON ELECTRIC DIPOLE MOMENT EXPERIMENTS

Nouri, Nima 01 January 2016 (has links)
A new neutron Electric Dipole Moment (nEDM) experiment was proposed to be commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source (SNS) of the Oak Ridge National Laboratory (ORNL). The underlying theme of this experiment (first conceived by Golub and Lamoreaux in 1994) is the search for new physics beyond the Standard Model of particle physics. The discovery of a non-zero nEDM would be of revolutionary importance to physics, with the discovery of such providing for evidence for new-beyond-the-Standard-Model physics required for a resolution to the unresolved puzzle of why the universe is dominated by matter, as opposed to anti-matter. A first demonstration of a new magnetic field monitoring system for a neutron electric dipole moment experiment is presented. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements. The results highlight the potential for the implementation of an improved system in an upcoming neutron electric dipole moment experiment to be carried out at the Spallation Neutron Source at Oak Ridge National Laboratory.
145

FUNDAMENTAL PROPERTIES, ACTIVITY, AND PLANET-HOSTING POTENTIAL OF YOUNG SUNS NEAR EARTH

Cabrera Salazar, Nicole E. 10 May 2017 (has links)
In this dissertation, we conduct a census and assessment of the nearest young Sun-like stars and investigate the potential for finding giant planets orbiting spotted stars using the radial velocity (RV) method at optical and near-infrared wavelengths. Based in part on new spectroscopic measurements conducted here, we have assembled a complete list of 129 young (<150 >Myr), nearby Sun-like stars and their fundamental parameters, including rotational and multiplicity information. We also provide a statistical analysis of their stellar parameters, including projected rotational velocity and inclination. Sixteen of these stars have no close companions and have low projected rotational velocities (vsini/s) that are ideal for precision RV planet searches. Seven of these rotate nearly edge-on and are ideal targets for upcoming transiting planet searches, assuming low obliquity. We conduct precision RV planet search of 7 young Sun-like stars using the TRES spectrograph, mounted on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory, and with the SOPHIE spectrograph, mounted on the 1.93-m Telescope at the Observatoire de Haute Provence; we achieve a precision of 10 m/s for both. Four stars are identified as having larger RV variations that are periodic, possibly caused by an orbiting companion. However, the RV variations are correlated with asymmetries in the spectral absorption features, which instead suggests that the variations are caused by spots. Nevertheless our observations provide new independent measures of the rotation periods of these stars. Through this analysis we tentatively confirm the planetary companion around BD+20 1790 in the presence of activity. We additionally investigate the use of comparing red orders of the optical spectrum to the blue orders in order to distinguish spots from planets; we find that this method can be effective for observations that span the full wavelength range of the optical. We also investigate our detection limits at optical wavelengths and find that we are sensitive to over 90% of short period giant planets. Next, we assemble the stellar jitter measurements of our stars with previous studies of all Sun-like stars younger than 1 Gyr to investigate how stellar jitter declines with stellar age. We find that stellar jitter decreases with stellar age as t^(0.53±0.13), similar to the relationship between stellar rotation period and stellar age. The implication is that it will be diffcult to find planets orbiting stars younger than 100 Myr without using techniques that mitigate star spot noise. Furthermore, we present a near-infrared RV search for giant planets orbiting 8 stars observed with CSHELL at the NASA Infrared Telescope Facility (IRTF). Because of the limited wavelength coverage (29 ̊A) and older (1980s) detector technology, the achieved precision of 200 m/s inhibits finding the majority of exoplanets, but is nevertheless sufficient to identify short-period brown dwarfs for these stars. We also analyze our detection limits at IR wavelengths and find that we are only sensitive to roughly 50% of short period giant planets. Finally, we present a new orbital solution for V835 Her, a spectroscopic binary with a 3 day orbital period.
146

Fundamental Parameters of Eclipsing Binaries in the Kepler Field of View

Matson, Rachel A. 15 December 2016 (has links)
Accurate knowledge of stellar parameters such as mass, radius, effective temperature, and composition inform our understanding of stellar evolution and constrain theoretical models. Binaries and, in particular, eclipsing binaries make it possible to measure directly these parameters without reliance on models or scaling relations. In this dissertation we derive fundamental parameters of stars in close binary systems with and without (detected) tertiary companions to test and inform theories of stellar and binary evolution. A subsample of 41 detached and semi-detached short-period eclipsing binaries observed by NASA’s Kepler mission and analyzed for eclipse timing variations form the basis of our sample. Radial velocities and spectroscopic orbits for these systems are derived from moderate resolution optical spectra and used to determine individual masses for 34 double-lined spectroscopic binaries, five of which have detected tertiaries. The resulting mass ratio M2/M1 distribution is bimodal, dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. A more detailed analysis of KIC 5738698, a detached binary consisting of two F-type main sequence stars with an orbital period of 4.8 days, uses the derived radial velocities to reconstruct the primary and secondary component spectra via Doppler tomography and derive atmospheric parameters for both stars. These parameters are then combined with Kepler photometry to obtain accurate masses and radii through light curve and radial velocity fitting with the binary modeling software ELC. A similar analysis is performed for KOI-81, a rapidly-rotating B-type star orbited by a low-mass white dwarf, using UV spectroscopy to identify the hot companion and determine masses and temperatures of both components. Well defined stellar parameters for KOI-81 and the other close binary systems examined in this dissertation enable detailed analyses of the physical attributes of systems in different evolutionary stages, providing important constraints for the formation and evolution of close binary systems.
147

Asteroseismology in Binary Stars with Applications of Bayesian Inference Tools

Guo, Zhao 14 December 2016 (has links)
Space missions like Kepler have revolutionized asteroseismology, the science that infers the stellar interiors by studying oscillation frequency spectra of pulsating stars. Great advancements have been made in understanding solar-like oscillators. However, this is not the case for variable stars of intermediate masses, such asScutiand Doradus variables. By studying these stars in eclipsing binaries (EBs), model independent funda- mental parameters such as mass and radius can be inferred. On one hand, this synergy constrains the parameter space and facilitates the asteroseismic modeling, and this is shown for the Scuti type pulsating EB KIC 9851944. On the other hand, studies of binary stars must address the complexities such as mass transfer. KIC 8262223 is such an example, which consists of a mass-gaining Scuti primary and a pre-He white dwarf secondary. Some of the eccentric binary systems, the ‘heartbeat’ stars, show tidally excited oscillations. After briefly reviewing the linear theory of tidally forced stellar oscillations, we study the tidal pulsating binary KIC 3230227 and demonstrate that both amplitude and phase can be used to identify the tidally excited pulsation modes. We also discuss the variability of a Slowly Pulsating B-star KOI-81 and a Cataclysmic variable KIC 9406652. In the second part of this dissertation, we apply Bayesian statistics to some problems in binaries and asteroseismology with the help of packages BUGS and JAGS. Special attention is paid to the inverse problems (tomography) encountered in studying the double-line spectroscopic binaries.
148

INFRARED DIAGNOSTICS ON MICRO AND NANO SCALE STRUCTURES

Titus, Jitto 15 December 2016 (has links)
Fourier Transform Infrared spectroscopy is used as a diagnostic tool in biological and physical sciences by characterizing the samples based on infrared light-matter interaction. In the case of biological samples, Activation of Jurkat T-cells in culture following treatment with anti-CD3 (Cluster of Differentiation 3) antibody is detectable by interrogating the treated T-cells using the Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) Spectroscopy technique. Cell activation was detected within 75 minutes after the cells encountered specific immunoglobulin molecules. Spectral markers noted following ligation of the CD3 receptor with anti CD3 antibody provides proof-of-concept that ATR-FTIR spectroscopy is a sensitive measure of molecular events subsequent to cells interacting with anti-CD3 Immunoglobulin G (IgG). ATR-FTIR spectroscopy is also used to screen for Colitis in chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject’s previous sample spectrum. The circular dichroism of titanium-doped silver chiral nanorod arrays grown using the glancing angle deposition (GLAD) method is investigated in the visible and near infrared ranges using transmission ellipsometry and spectroscopy. The characteristics of these circular polarization effects are strongly influenced by the morphology of the deposited arrays. Studies of optical phonon modes in nearly defect-free GaN nanowires embedded with intrinsic InGaN quantum dots by using oblique angle transmission infrared spectroscopy is described here. These phonon modes are dependent on the nanowire fill-factor, doping densities of the nanowires and the presence of InGaN dots. These factors can be applied for potential phonon based photodetectors whose spectral responses can be tailored by varying a combination of these three parameters. The optical anisotropy along the growth (c-) axis of the GaN nanowire contributes to the polarization agility of such potential photodetectors.
149

Optoelectronic and Structural Properties of Group III-Nitride Semiconductors Grown by High Pressure MOCVD and Migration Enhanced Plasma Assisted MOCVD

Matara Kankanamge, Indika 15 December 2016 (has links)
The objective of this dissertation is to understand the structural and optoelectronic properties of group III-nitride materials grown by High-Pressure Metal Organic Chemical Vapor Deposition (HP-MOCVD) and Migration Enhanced Plasma Assisted MOCVD by FTIR reflectance spectroscopy, Raman spectroscopy, X-ray diffraction, and Atomic Force Microscopy. The influence of the substrates/templates (Sapphire, AlN, Ga-polar GaN, N-polar GaN, n-GaN, and p-GaN) on the free carrier concentration, carrier mobility, short-range crystalline ordering, and surface morphology of the InN layers grown on HP-MOCVD were investigated using those techniques. The lowest carrier concentration of 7.1×1018 cm-3 with mobility of 660 cm2V-1s-1 was found in the InN film on AlN template, by FTIR reflectance spectra analysis. Furthermore, in addition to the bulk layer, an intermediate InN layers with different optoelectronic properties were identified in these samples. The best local crystalline order was observed in the InN/AlN/Sapphire by the Raman E2 high analysis. The smoothest InN surface was observed on the InN film on p-GaN template. The influence of reactor pressures (2.5–18.5 bar) on the long-range crystalline order, in plane structural quality, local crystalline order, free carrier concentration, and carrier mobility of the InN epilayers deposited on GaN/sapphire by HP-MOCVD has also been studied using those methods. Within the studied process parameter space, the best material properties were achieved at a reactor pressure of 12.5 bar and a group-V/III ratio of 2500 with a free carrier concentration of 1.5x1018 cm-3, a mobility in the bulk InN layer of 270 cm2 V-1s-1 and the Raman (E2 high) FWHM of 10.3 cm-1. The crystalline properties, probed by XRD 2θ–ω scans have shown an improvement with the increasing reactor pressure. The effect of an AlN buffer layer on the free carrier concentration, carrier mobility, local crystalline order, and surface morphology of InN layers grown by Migration-Enhanced Plasma Assisted MOCVD were also investigated. Here, the AlN nucleation layer was varied to assess the physical properties of the InN layers. This study was focused on optimization of the AlN nucleation layer (e.g. temporal precursor exposure, nitrogen plasma exposure, and plasma power) and its effect on the InN layer properties.
150

Polarization Rotation Study of Microwave Induced Magnetoresistance Oscillations in the GaAs/AlGaAs 2D System

Liu, Han-Chun 15 December 2016 (has links)
Previous studies have demonstrated the sensitivity of the amplitude of the microwave radiation-induced magnetoresistance oscillations to the microwave polarization. These studies have also shown that there exists a phase shift in the linear polarization angle dependence. But the physical origin of this phase shift is still unclear. Therefore, the first part of this dissertation analyzes the phase shift by averaging over other small contributions, when those contributions are smaller than experimental uncertainties. The analysis indicates nontrivial frequency dependence of the phase shift. The second part of the dissertation continues the study of the phase shift and the results suggest that the specimen exhibits only one preferred radiation orientation for different Hall-bar sections. The third part of the dissertation summarizes our study of the Hall and longitudinal resistance oscillations induced by microwave frequency and dc bias at low filling factors. Here, the phase of these resistance oscillations depends on the contact pair on the device, and the period of oscillations appears to be inversely proportional to radiation frequency.

Page generated in 0.1427 seconds