• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 157
  • 40
  • 33
  • 18
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • Tagged with
  • 577
  • 196
  • 150
  • 118
  • 102
  • 84
  • 74
  • 63
  • 59
  • 57
  • 52
  • 50
  • 48
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Evaluation of Membrane Aerated Biofilm Reactor and Tertiary Treatment for the Removal of Organic Micropollutants in Municipal Wastewater

Sanchez Huerta, Claudia 11 1900 (has links)
Occurrence of organic micropollutants (OMPs) in aquatic environment is a worldwide concern. A long list of anthropogenic substances, including pharmaceuticals, hormones, etc., are frequently detected in natural water sources. Wastewater treatment plants are one main source of OMPs pollution, but also a key step to control OMPs dissemination into the environment. This dissertation focuses on the evaluation of Membrane Aerated Biofilm Reactor (MABR) as a sustainable process to treat wastewater polluted by OMPs. Furthermore, application of high intensity pulsed light is proposed as an innovative tertiary treatment to produce reclaimed water of high quality. In Chapter 1, a literature review was performed to investigate the occurrence and toxicity of 12 selected organic micropollutants (OMPs) in surface and ground water and the limitations of current available biological processes. Among these technologies, systems with enriched nitrifying activity were able to enhance the removal of specific OMPs through cometabolic activities. Thus, I proposed the use of a MABR with enriched nitrifying biomass to treat OMP polluted water. In Chapter 2, I studied the influence of biofilm thickness on the removal of 13 OMPs via MABR. Results demonstrated OMP removal was dependent on biofilm thickness and bacterial cell density. MABR demonstrated important efficiencies in the removal of ammonium, COD, acetaminophen and triclosan at early stages of biofilm thickness. However, the removal of nonpolar, hydrophobic 4 OMPs and anionic, acidic OMPs required thicker biofilms, achieving maximum removal at biofilm with 1.02 mm thickness and 2.2 × 106 cell mL-1. In Chapter 3, the contribution of sorption and biodegradation in the removal of OMPs via MABR was evaluated. At three stages of biofilm thickness studied, biodegradation dominated the removal for most OMPs. Heterotrophs played an important role in OMP biodegradation at all biofilm thickness, while autotrophic nitrifiers enhanced their contribution at thickness beyond 0.58 mm. Increased removal of pollutants like estrone and ethinyl estradiol were linked to the MABR enrichment with nitrifying bacteria. Sorption was essential for the removal of lipophilic and recalcitrant pollutants like triclosan. Finally, to provide high quality treated water for reuse, Chapter 4 explores the use of high-intensity pulsed light (HIPL) as post-treatment. The number of pulses and optical energy dose have a significant impact on the OMPs removal. HIPL demonstrated fast kinetics and efficient photodegradation – with significant OMPs removal within milliseconds. The findings from my Ph.D. dissertation indicate that MABR combined with high-intensity pulse light may be an effective treatment train for the efficient removal OMPs present in municipal wastewaters. This combined treatment process could potentially pave the way to produce high quality reclaimed water for various reuse purposes.
532

Comparison of Aeration Strategies for Optimization of Nitrogen Removal in an Adsorption/Bio-oxidation (A/B) Process with an Emphasis on Ammonia vs. NOx (AvN) control

Sadowski, Michael Stuart 08 December 2015 (has links)
Research was performed at a pilot-scale wastewater treatment plant operating an adsorption/bio-oxidation (A/B) process at 20C. The study compared B-Stage performance under DO Control, Ammonia Based Aeration Control (ABAC), and Ammonia vs. NOx (AvN) control. AvN in 1) fully-intermittent and 2) intermittently-aerated MLE configurations was compared to DO Control and ABAC, each with continuous aeration, in an MLE configuration. The study also examined operation of each aeration strategy with two different feed types: A-Stage effluent (ASE) and primary clarifier effluent (PCE). Operating modes were compared on the basis of nitrogen removal performance, COD utilization efficiency for denitrification, and alkalinity consumption. AvN was found to provide comparable nitrogen removal performance to DO Control and ABAC. The highest nitrogen removal performance was seen when operating DO Control (81.4 ± 1.2%) and ABAC (81.1 ± 1.2%) with PCE. High nitrogen removal efficiency (77.5 ± 6.1%) was seen when fully-intermittent AvN operation was fed ASE containing a high particulate COD fraction. A high effluent nitrite accumulation ratio (NAR = NO2-/(NO2-+NO3-)) was seen during this period (46 ± 15%) accompanied by the out-selection of Nitrospira. Feeding effluent from AvN control to an Anammox MBBR improved removal efficiency. Increased soluble COD loading resulted in greater nitrogen removal with strategies operating in an MLE configuration while particulate COD was found to be important for processes where removal was designed to occur in downstream reactors. Efficiency of COD for denitrification was found to vary based on the amount and type of influent COD; however AvN in an MLE configuration was found to use COD more efficiently than fully-intermittent AvN. In either configuration, AvN required less alkalinity addition than DO Control or ABAC. High sCOD concentrations in PCE led to increased nutrient removal as compared to ASE but increased heterotrophic growth and mixed liquor concentrations in the B-Stage making the A-Stage an attractive option for its ability to control the C/N ratio fed to BNR processes. / Master of Science
533

Performance of Rotating Biological Contactors under Transient Loading Conditions / RBC Performance Under Transient Loading Conditions

Filion, Michel P. 11 1900 (has links)
<p> This report examines the dynamic response of a 0. 5 metre pilot scale rotating biological contactor when operated under transient influent conditions. Experimental data are presented for two modes of operation: carbon oxidation and carbon oxidation plus nitrification. During the carbon oxidation experimental runs, a 2.0 metre RBC was operated in parallel with the 0.5 metre RBC, thus allowing comparisons in the performance of the units. </p> <p> When the 0. 5 metre RBC was operated under nitrifying conditions, it was found that the effluent filterable TKN responded positively to influent variations in filterable TKN loading, TKN concentration and hydraulic loading. Transfer f unction noise models were developed which successfully predicted the time varying effluent TKN response. The response in effluent filterable TKN was predicted most precisely by influent TKN loading. Models based on influent TKN concentration and flow were not as precise in predicting effluent response. The effluent response of the 0.5 metre RBC was found to be greater than the response of activated sludge pilot units when operated at similar levels of removal. </p> <p> When the 0. 5 metre RBC was operated in the carbon oxidation 'mode, significant effluent responses were observed for carbon loading and concentration. Little correlation was found between influent flow and effluent carbon concentration. Operating under identical conditions, the 2.0 m RBC showed significant responses to carbon loading, carbon concentration and flow. </p> / Thesis / Master of Engineering (MEngr)
534

Identification, Enumeration and Diversity of Nitrifying Bacteria in the Laurentian Great Lakes

Ray, Anirban 09 November 2012 (has links)
No description available.
535

Leachate-Based Biotic Ligand Model for Soil : Ecotoxicological Risk Assessment of Copper for Invertebrates, Plants, and Soil Microbial Processes

Florén, Tove January 2021 (has links)
Environmental pollution of heavy metals has become an increasing problem. Environmental risk assessments can be conducted to investigate and determine the potential risk of polluted terrestrial environments. Traditionally, risk assessments are based on total soil metal concentrations on a dry weight basis. Assessments based on total concentrations do not account for metal bioavailability. The bioavailable fraction of the metal is that available for metabolic uptake over a biological membrane, and it is largely controlled by the physiochemical characteristics of the soil solution. For soil-dwelling organisms the most important physiochemical parameters governing copper toxicity are pH and dissolved organic carbon. To incorporate these parameters into risk assessments mechanistic chemical equilibrium models can be used, such as biotic ligand models. These have previously been applied to mainly aquatic environments and only in recent years they have been expanded to the terrestrial realm. The overall aim of this thesis was to test the applicability of a leachate-based biotic ligand model, which takes pH dependency into account, for ecotoxicological risk assessment of soil-dwelling organisms. Toxicity data with associated soil solution pH for seven soil-dwelling organisms and microbially mediated soil processes were obtained from the Swedish Geotechnical Institute. Physiochemical soil characteristics of three Swedish field sampled soils amended with biochar were also obtained from the Swedish Geotechnical Institute. The toxicity data were used to derive two key parameters for calibration of the soil biotic ligand model through linear regression analysis i.e., the pH dependency and the species-specific intrinsic sensitivity. The calibrated biotic ligand models were applied to the field soils and species sensitivity distributions were derived for each soil to calculate hazardous metal concentrations. A simplified risk assessment of the soils was performed based on the results of the leachate-based biotic ligand models and on measured total concentrations on a dry weight basis.  As expected, the results of the regression analysis showed a strong pH dependency between toxicity effect concentrations and pH. For all included test organisms, the copper toxicity effect concentration decreased as the pH of the soil solution increased. Although Cu2+ toxicity increased with increasing pH, the considered organisms showed individual and varying pH-dependencies especially at pH 3-4 and pH 7-8. Further, the results showed that the risk assessment based on the Swedish EPA method, which use total metal concentrations on a dry weight basis, yielded different results than risk assessment based on the leachate-based biotic ligand models. The soils that had been amended with biochar contained lower total Cu concentrations on a dry weight basis compared to those which had not been amended. Consequently, total Cu concentrations exceeded the guideline value for sensitive land-use only in the non-amended soils. Total Cu concentrations exceeded the guideline value for less sensitive land-use in all field soils. Similar to total Cu concentrations on a dry weight basis, the total dissolved Cu concentrations also decreased with added biochar. The same trend could not be seen for Cu2+ in CaCl2 leachates. DOC in the leachates decreased with added biochar, suggesting that biochar sorbs DOC. A majority of the total dissolved Cu was bound to DOC and only a small fraction left as free ions.  The lower DOC concentrations led to higher Cu2+ concentrations in the leachate. Consequently, two of the biochar amended soils had Cu2+ concentrations exceeding the calculated HC50 (protection level for LSL). The predicted toxic effect concentrations ranged from 0.001 μg/L for the most sensitive organism Tomato shoot (L. esculentum) to 3.53 μg/L for the least sensitive organism Soil induced respiration (SIR). The most sensitive field soil had the highest measured pH and had been amended with 6% biochar, the two least sensitive field soils had the lowest measured pH and had been amended with 3 and 6% biochar respectively. The risk assessment based on the soil-BLM approach yielded different, but not less conservative, results compared to the traditional risk assessment based on total concentrations on a dry weight basis. The expected result was for the BLM-based risk assessment to be less conservative as it takes the site-specific bioavailability into account. The leachate-based soil-BLM seems to be sensitive to changes and variations of the input parameters in the speciation. To improve the robustness of the model, and accuracy of risk assessments, additional organisms should be included in the SSDs and speciation should be performed on soils with a wider range of pH. The potential of leachate-based BLMs for risk assessment has been demonstrated. The results invite to further v development of leachate-based soil-BLMs and has the potential to increase the knowledge of the chemistry and toxicology of copper in soils as well as the effects and behaviour of biochar as a metal sorbent.
536

Optimizing the nitrogen removal in leachate treatment during continuous-flow biological treatment (KBR) / Optimering av kvävereningen i lakvatten under kontinuerlig biologisk rening (KBR)

De Luca, Leandra Anali January 2021 (has links)
Användandet av deponier är en av de vanligaste metoderna för avfallshantering globalt. Trots insatser som gjordes för att förbjuda hushållsavfall i deponier under millennieskiftet, deponier skapade innan restriktionerna är fortfarande en risk för miljön. Under 2014 öppnade SÖRAB en kontinuerlig biologisk reningsanläggning (KBR-anläggning) på Löt Avfallsanläggning för att hantera lakvatten från en gammal deponi som under en tid fylldes med hushållsavfall. Sedan dess har SÖRAB arbetat med att förbättra KBR-anläggningen. Målet med denna studie är att utforma en driftstrategi för KBR-anläggningen för att förbättra kvävereningen vid låga temperaturer. Ett antal laborativa försök genomfördes, såsom den mikrobiella konsortiets livsduglighet i lakvattnet och tillväxten i både rumstemperatur och vid 4°C, bioaugmentation genom att berika den mikrobiella cellkulturen som redan finns i lakvattnet och hur detta förbättrar kvävereningen i jämförelse med tillsatser av den kommersiella bakterieblandningen ClearBlu Environmental och andra externa kolkällor. Resultaten från dessa laborativa försök påvisade komplett nitrifikation i både rumstemperatur och 4°C i berikat lakvatten från KBR-anläggningens L2A bassäng efter fem dagar. Försöket visade även på syresatt denitrifikation. Dessutom påvisades komplett denitrifikation inom fem dagar, vid rumstemperatur i lakvatten från anläggningens L2B bassäng. Under efterföljande pilotförsök påvisades möjligheten till upplivandet av den biologiska kvävereningen genom berikningen av den mikrobiella cellkulturen i lakvattnet. I ett pilotförsök då lakvatten från L2B bassängen berikades, komplett denitrifikation skedde under en anaerob fas på 16 dagar samt nitrifikation och aerob denitrifikation under ett påföljande 17 dagar lång aerob fas. Ett annat pilotförsök då lakvatten från L2A bassängen berikades påvisade både aerob och anaerob nitrifikation, då ammoniumrening skedde i både den syresatta och syrefria fasen. Tillsatsen av nutrient broth (näringsbuljong) kan påverka KBR-anläggningen, vilket kväver vidare studier. Resultatet från detta projekt tydligt påvisar att kvävereningen i KBR-anläggningen kan förbättras genom att berika den redan närvarande mikrobiella kulturen. / Landfilling has been one of the most popular methods of handling waste globally. Despite the efforts made to stop the disposal of household waste during the turn of the millennia, the landfills formed before these restrictions are still at risk for causing harm to the environment. In 2014, SÖRAB opened a continuous-flow biological treatment (KBR) facility in Löt to treat the leachate produced in one of their older landfills, once filled with household waste. Since then, SÖRAB has been working on improving the treatment facility. The aim of this the study is to find a suitable process to enhance the nitrogen removal at low temperature. Several laboratory scale experiments were performed, such as viability of microbial consortia in the leachate and growth at room temperature and at 4°C, testing bioaugmentation by enriching the microbial cell culture in the leachate and their efficiency in removing nitrogen, compared to the commercial cell culture ClearBlu Environmental and carbon source addition. The results displayed complete nitrification at both room temperature and 4°C in bioaugmented, enriched leachate originating from the L2A basin of the KBR facility, after five days. These trials also suggested the occurrence of aerated denitrification. Complete denitrification within five days was seen at room temperature in bioaugmented, enriched leachate from the L2B basin of the same facility. The ensuing pilot scale trials proved the possibility to revive the biological nitrogen removal by microbial cell culture enrichment. In one pilot in which leachate from the L2B basin was enriched, complete denitrification in the anaerobic phase consisting of 16 days occurred, along with some nitrification and aerated denitrification in the 17 day long aerated phase that followed. Another pilot scale trail in which leachate from the L2A basin was enriched, both aerobic and anaerobic nitrification occurred, as ammonium removal occurred in both the aerated and unaerated phases. The addition of nutrient broth might influence the KBR system which needs further study. The results from this project clearly demonstrate that nitrogen removal in the KBR facility could be enhanced using a culture naturally present in the facility.
537

Treatment of High-Strength Nitrogen Wasetewater With a Hollow-Fiber Membrane-Aerated Biofilm Reactor: A Comprehensive Evaluation

Gilmore, Kevin R. 17 September 2008 (has links)
Protecting the quality and quantity of our water resources requires advanced treatment technologies capable of removing nutrients from wastewater. This research work investigated the capability of one such technology, a hollow-fiber membrane-aerated biofilm reactor (HFMBR), to achieve completely autotrophic nitrogen removal from a wastewater with high nitrogen content. Because the extent of oxygenation is a key parameter for controlling the metabolic processes that occur in a wastewater treatment system, the first part of the research investigated oxygen transfer characteristics of the HFMBR in clean water conditions and with actively growing biofilm. A mechanistic model for oxygen concentration and flux as a function of length along the non-porous membrane fibers that comprise the HFMBR was developed based on material properties and physical dimensions. This model reflects the diffusion mechanism of non-porous membranes; namely that oxygen follows a sorption-dissolution-diffusion mechanism. This is in contrast to microporous membranes in which oxygen is in the gas phase in the fiber pores up to the membrane surface, resulting in higher biofilm pore liquid dissolved oxygen concentrations. Compared to offgas oxygen analysis from the HFMBR while in operation with biofilm growing, the model overpredicted mass transfer by a factor of approximately 1.3. This was in contrast to empirical mass transfer coefficient-based methods, which were determined using either bulk aqueous phase dissolved oxygen (DO) concentration or the DO concentration at the membrane-liquid interface, measured with oxygen microsensors. The mass transfer coefficient determined with the DO measured at the interface was the best predictor of actual oxygen transfer under biofilm conditions, while the bulk liquid coefficient underpredicted by a factor of 3. The mechanistic model exhibited sensitivity to parameters such as the initial lumen oxygen concentration (at the entry to the fiber) and the diffusion coefficient and partitioning coefficients of oxygen in the silicone membrane material. The mechanistic model has several advantages over empirical-based methods. Namely, it does not require experimental determination of KL, it is relatively simple to solve without the use of advanced mathematical software, and it is based upon selection of the membrane-biofilm interfacial DO concentration. The last of these is of particular importance when designing and operating HFMBR systems with redox (aerobic/anoxic/anaerobic) stratification, because the DO concentration will determine the nature of the microenvironments, the microorganisms present, and the metabolisms that occur. During the second phase of the research, the coupling of two autotrophic metabolisms, partial nitrification to nitrite (nitritation) and anaerobic ammonium oxidation, was demonstrated in a single HFMBR. The system successfully treated a high-strength nitrogen wastewater intended to mimic a urine stream from such sources as extended space missions. For the last 250 days of operation, operating with an average oxygen to ammonia flux (J<sub>O₂</sub>/J<sub>NH₄⁺</sub>) of 3.0 resulted in an average nitrogen removal of 74%, with no external organic carbon added. Control of nitrite-oxidizing bacteria (NOB) presented a challenge that was addressed by maintaining the J<sub>O₂</sub>/J<sub>NH₄⁺</sub> below the stoichiometric threshold for complete nitrification to nitrate (4.57 g O₂ / g NH₄⁺). The DO-limiting condition resulted in formation of harmful gaseous emissions of nitrogen oxides (NO, N2O), which could not be prevented by short-term control strategies. Controlling JO2/JNH4+ prevented NOB proliferation long enough to allow an anaerobic ammoniaoxidizing bacteria (AnaerAOB) population to develop and be retained for >250 days. Addition of a supplemental nutrient solution may have contributed to the growth of AnaerAOB by overcoming a possible micronutrient deficiency. Disappearance of the gaseous nitrogen oxide emissions coincided with the onset of anaerobic ammonium oxidation, demonstrating a benefit of coupling these two autotrophic metabolisms in one reactor. Obvious differences in biofilm density were evident across the biofilm depth, with a region of low density in the middle of the biofilm, suggesting that low cell density or exocellular polymeric substances were primarily present in this region, Microbial community analysis using fluorescence in situ hybridization (FISH) did not reveal consistent trends with respect to length along the fibers, but radial stratification of aerobic ammonia-oxidizing bacteria (AerAOB), NOB, and AnaerAOB were visible in biofilm section samples. AerAOB were largely found in the first 25% of the biofilm near the membrane, AnaerAOB were found in the outer 30%, and NOB were found most often in the mid-depth region of the biofilm. This community structure demonstrates the importance of oxygen availability as a determinant of how microbial groups spatially distribute within an HFMBR biofilm. The combination of these two aspects of the research, predictive oxygen transfer capability and the effect of oxygen control on performance and populations, provides a foundation for future application of HFMBR technology to a broad range of wastewaters and treatment scenarios. / Ph. D.
538

Evaluation of seasonal impacts on nitrifiers and nitrification performance of a full-scale activated sludge system

Awolusi, Oluyemi Olatunji January 2016 (has links)
Submitted in complete fulfillment for the degree of Doctor of Philosophy (Biotechnology), Durban University of Technology, Durban, South Africa, 2016. / Seasonal nitrification breakdown is a major problem in wastewater treatment plants which makes it difficult for the plant operators to meet discharge limits. The present study focused on understanding the seasonal impact of environmental and operational parameters on nitrifiers and nitrification, in a biological nutrient removal wastewater treatment works situated in the midlands of KwaZulu Natal. Composite sludge samples (from the aeration tank), influent and effluent water samples were collected twice a month for 237 days. A combination of fluorescent in-situ hybridization, polymerase chain reaction (PCR)-clone library, quantitative polymerase chain reaction (qPCR) were employed for characterizing and quantifying the dominant nitrifiers in the plant. In order to have more insight into the activated sludge community structure, pyrosequencing was used in profiling the amoA locus of ammonia oxidizing bacteria (AOB) community whilst Illumina sequencing was used in characterising the plant’s total bacterial community. The nonlinear effect of operating parameters and environmental conditions on nitrification was also investigated using an adaptive neuro-fuzzy inference system (ANFIS), Pearson’s correlation coefficient and quadratic models. The plant operated with higher MLSS of 6157±783 mg/L during the first phase (winter) whilst it was 4728±1282 mg/L in summer. The temperature recorded in the aeration tanks ranged from 14.2oC to 25.1oC during the period. The average ammonia removal during winter was 60.0±18% whereas it was 83±13% during summer and this was found to correlate with temperature (r = 0.7671; P = 0.0008). A significant correlation was also found between the AOB (amoA gene) copy numbers and temperature in the reactors (α= 0.05; P=0.05), with the lowest AOB abundance recorded during winter. Sanger sequencing analysis indicated that the dominant nitrifiers were Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. Pyrosequencing revealed significant differences in the AOB population which was 6 times higher during summer compared to winter. The AOB sequences related to uncultured bacterium and uncultured AOB also showed an increase of 133% and 360% respectively when the season changed from winter to summer. This study suggests that vast population of novel, ecologically significant AOB species, which remain unexploited, still inhabit the complex activated sludge communities. Based on ANFIS model, AOB increased during summer season, when temperature was 1.4-fold higher than winter (r 0.517, p 0.048), and HRT decreased by 31% as a result of rainfall (r - 0.741, p 0.002). Food: microorganism ratio (F/M) and HRT formed the optimal combination of two inputs affecting the plant’s specific nitrification (qN), and their quadratic equation showed r2-value of 0.50. This study has significantly contributed towards understanding the complex relationship between the microbial population dynamics, wastewater composition and nitrification performance in a full-scale treatment plant situated in the subtropical region. This is the first study applying ANFIS technique to describe the nitrification performance at a full-scale WWTP, subjected to dynamic operational parameters. The study also demonstrated the successful application of ANFIS for determining and ranking the impact of various operating parameters on plant’s nitrification performance, which could not be achieved by the conventional spearman correlation due to the non-linearity of the interactions during wastewater treatment. Moreover, this study also represents the first-time amoA gene targeted pyrosequencing of AOB in a full-scale activated sludge is being done. / D
539

Dynamique saisonnière des communautés nitrifiantes dans un petit lac oligotrophe

Massé, Stéphanie 01 1900 (has links)
Depuis la découverte d’archées capables d’oxyder l’ammoniac en milieu aérobie, de nombreuses études ont mesuré en simultané les taux de nitrification et la diversité des organismes oxydant l’ammoniac dans la colonne d’eau des milieux marins. Malgré l’importance globale des lacs d’eau douce, beaucoup moins d’études ont fait la même chose dans ces milieux. Dans cette étude, nous avons évalué l’importance de la nitrification et caractérisé la communauté microbienne responsable de la première étape limitante de la nitrification dans un lac tempéré durant une année entière. L’utilisation de traceur isotopique 15NH4 nous a permis de mesurer des taux d’oxydation d’ammoniac à deux profondeurs dans la zone photique tout au long de l’année. Les taux d’oxydation d’ammoniac varient de non détectable à 333 nmol L-1 j-1 avec un pic d’activité sous la glace. De toutes les variables environnementales mesurées, la concentration d’ammonium dans la colonne d’eau semble avoir le plus grand contrôle sur les taux d’oxydation d’ammoniac. Nous avons détecté la présence d’archées (AOA) et de bactéries oxydante d’ammoniac (BOA) à l’aide de tests par réaction en chaîne de la polymérase (PCR) ciblant une partie du gène ammoniac monoxygénase (amoA). Les AOA et les BOA ont été détectées dans la zone photique du lac, cependant seules les AOA étaient omniprésentes durant l’année. Le séquençage du gène amoA des archées révèle que la majorité des AOA dans le lac sont membres du groupe phylogénétique Nitrosotalea (également appelé SAGMGC-1 ou groupe I.1a associé), ce qui confirme la pertinence écologique de ce groupe dans les eaux douces oligotrophes. Globalement, nos résultats indiquent l’hiver comme étant un moment propice pour l’oxydation de l’ammoniac dans les lacs tempérés. Cette étude fournit un point de référence pour la compréhension du processus d’oxydation de l’ammoniac dans les petits lacs oligotrophes. / Since the discovery that some archaea are able to oxidize ammonia aerobically, several studies have focused on measuring nitrification rates and identifying the diversity of planktonic ammonia oxidizers in marine systems. Despite the global importance of freshwater lakes, far fewer studies have done the same in these ecosystems. Here we investigated the importance of nitrification and characterize the microbial community catalyzing the first rate-limiting step of nitrification over an annual cycle in a temperate lake. The measurements of ammonia oxidation rates, using the 15NH4+ isotope tracer method, at two depths in the photic zone show that this process occurred throughout the entire year in the lake. Rates of ammonia oxidation ranged from undetectable to 333 nmol L-1 d-1 with a peak of activity during winter. Off all environmental variables measured, ammonium concentrations in the water-column seem to have the strongest effect on the magnitude of ammonia oxidation rates. We detected the presence of ammonia-oxidizing archaea (AOA) and bacteria (AOB) using polymerase chain reaction (PCR) assays targeting part of the ammonia monooxygenase (amoA) gene. Both AOA and AOB were detected in the photic zone of the lake, although only AOA were omnipresent over the year. The sequencing of archaeal amoA genes reveals that most of the AOA in the lake are members of the Nitrosotalea cluster (also referred as SAGMGC-1 or group I.1a associated), which confirms the ecological relevance of this cluster in oligotrophic freshwaters. Altogether, our results indicate that winter may be a critical time for ammonia oxidation in temperate lakes and provide a baseline for the understanding of ammonia oxidation in small oligotrophic lakes.
540

Intérêt d’un bioréacteur à membranes immergées pour le traitement de la pollution azotée dans une eau usée carencée en matière organique / Membrane bioreactor for notrogen removal : active biomass identification and modelling

Gasmi, Aicha 14 December 2012 (has links)
Le surcoût de fonctionnement d'un BRM immergé a pour origine essentielle la dépense d'énergie liée à la maîtrise de la perméabilité membranaire par aération. La littérature montre les liens qui existent entre concentration en biomasse dans le réacteur et présence de produits microbiens solubles liés à l'activité bactérienne. Réduire la demande en énergie signifie réduire l'aération membrane, voire l'aération process liée aux besoins en oxygène des populations épuratrices. Pour ce faire, il est donc déterminant de réduire l'activité biologique au sein du réacteur sans pour autant dégrader la qualité de l'eau traitée. Pour répondre à ce défi, il a été proposé de développer un BRM en association avec un prétraitement physico-chimique dont le rôle est de retenir une grande part de la matière organique (mais aussi probablement les phosphates), le BRM n'a alors pour rôle que de traiter le résiduel de matière organique et d'éliminer les composés azotés peu retenus par précipitation physico-chimiques. Ainsi, la demande en oxygène sera réduite car il reste peu de DCO à dégrader et la croissance cellulaire limitée car les populations seraient essentiellement autotrophes. Ce travail de thèse a donc été centré sur les points suivants : (i) les performances d'un bioréacteur à membrane fonctionnant sous une charge essentiellement azotée, ces performances sont analysées en termes de réactions d'élimination des fractions polluantes et de filtrabilité des suspensions, (ii) suivi et modélisation des cinétiques de réactions, (iii) définition d'outils simples de dimensionnement. Des méthodologies expérimentales originales ont été mises en place, réacteur pilote et méthodes d'analyses spécifiques (suivi en ligne des composés azotés, méthodes respirométriques notamment). Les résultats obtenus ont permis d'évaluer (i) les capacités de nitrification en régime permanent, (ii) les grandeurs cinétiques propres aux populations autotrophes suivant le modèle ASM1 (XBA, YA, KSH, bA), (iii) la filtrabilité des suspensions sur membranes poreuses avec une contribution significative de la résistance hydraulique due à un biofilm qui se développe en surface de membrane (par rapport aux autres processus, notamment les phénomènes d'adsorption ou bouchage de pores). Ces résultats ont permis de définir des nouveaux outils simples d'extrapolation, notamment des grandeurs réactionnelles spécifiques propres aux espèces nitrifiantes comme le ratio rSNHmax/OURendaut exprimant un rapport de vitesse de nitrification par une grandeur proportionnelle à la concentration en biomasse nitrifiante. / Membrane bioréactor, coupling bioreactions and porous membrane separation in a same unit, allows working with high biomass concentrations what improves bioreaction rates but penalizes the separation step. This work had as objective to study the nitrifiers micro-organisms on the membrane fouling dynamic and on the nitrogen removal efficiency. According to precedent works of the laboratory and the analyses of references, the objective was axed on the modeling tools available for heterotrophe and autotrophe biomass caracterisation. Then, specific methodologies were carried out, lab scale pilots and analytical methods, notably for active biomass observations and identification. Theses tools underline the role of these dominant populations (i) the use of ASM to simulate the biomass performances in relation with working conditions and (ii) the respirometric methods to experimentally quantify the specific biomass activity. Then results clearly pointed out the role of the COD/N ratio on the biomass and MBR performances. Passing from the urban wastewater to synthetic substrate with a final COD/N ratio of 1.5, the proportion of autotrophic bacteria in active biomass increased from 16 to 72%. Specific criteria were defined to characterise the biomass activity as rnitrif/ OURAutoend or rDCO / OURHetend allowing universal parameters definition

Page generated in 0.0915 seconds