• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 62
  • 27
  • 18
  • 11
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 280
  • 70
  • 44
  • 43
  • 40
  • 32
  • 29
  • 28
  • 27
  • 26
  • 25
  • 23
  • 21
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

none

Hsu, Ying-ling 15 July 2006 (has links)
none
102

none

tseng, Yen-jie 19 July 2006 (has links)
none
103

Synthesis Of 2-aminopyrrole-3-carboxylates Via Zinc Perchlorate Mediated Annulation Of Alpha-cyano-gamma-ketoesters With Amines

Akca, Nazmiye Bihter 01 August 2008 (has links) (PDF)
2-Aminopyrrole-3-carboxylate derivatives are important starting materials for biologically active compounds like pyrrolotriazole, pyrrolotriazine so their synthese has great importance in the synthetic organic chemistry. There are only two methods for the synthesis of 2-aminopyrrole-3-carboxylates in the literature. Therefore, there is a great need for the design and development of a new method for the synthesis of 2-aminopyrrole-3-carboxylates. In this work, 2-aminopyrrole-3-carboxylate derivatives were synthesized starting from cyano acetic acid ethyl ester with a new method. In the first step, cyanoacetic acid ethyl ester was alkylated with bromo acetone in the presence of NaH. Then, obtained gamma-ketoester was reacted with primary amines in the presence of catalytic amount of zincpechlorate (Zn(ClO4)2). As a result, 2-aminopyrrole-3-carboxylate derivatives were obtained. Cyanoacetic acid ethyl ester was also alkylated with various bromo acetophenone derivatives in the presence of DBU (1,8-Diazabicycloundec-7-ene). As a result of these reactions, different gamma-ketoesters were obtained. The reaction of these gamma-ketoesters with primary amines in the presence of catalytic amount of Zn(ClO4)2 concluded with 2-aminopyrrole-3-carboxylate derivatives.
104

Genetical Investigation Of Balya-balikesir Lead-zinc Mineralizations

Ozisik, Gulsevim 01 January 2009 (has links) (PDF)
This thesis study is concerned with genetical investigation of Balikesir Balya Pb-Zn mineralization through the mineralogic-petrographic and geochemical examination of the core samples obtained from a total of 9 holes drilled by EczacibaSi ESAN Madencilik. The Pb-Zn mineralization in Balya is mainly of vein-type. Wall rocks hosting mineralizations are dacite, dacite porphyry and microdiorite. Major types of alteration are silicification, carbonatization and calc-silicate alteration, each of which is further subdivided into early and late stages and overprinted by argillic alteration of probable supergene origin. The ore minerals are mainly Zn- and Pb-sulphides and are hosted by the rocks with late calc-silicate alteration that underwent pervasive late silicification and late carbonatization. Sulfide mineralization is spatially and temporally associated with the late silicification and carbonatization stages. Lateral-vertical correlation of drill logs suggest that thickness of the ore zone tends to decrease towards north. The volcanic rocks hosting the mineralization have calc-alkaline nature. Major, trace and rare earth element (REE) geochemistry suggests either crustal contamination or subduction signature in the mantle source of the volcanics. Multi element patterns and discrimination diagrams collectively point to a post-collisional setting for their generation. Alteration geochemistry reveals that Fe2O3 and CaO are enriched during calc-silicate alteration in contrast to depletion of SiO2. Al2O3 and TiO2 are almost constant during late calc-silicate alteration. Enrichment of Fe2O3 and Na2O, and depletion of K2O characterize the silicified zones. Carbonatization is accompanied by strong enrichment of CaO and depletion of SiO2, Al2O3 and K2O.
105

Characterizations of Electrochemically Synthesized Zinc Oxide

Tu, Hwai-Fu 26 June 2008 (has links)
Zinc oxide (ZnO) has higher exiton binding energy (60 meV) and high band gap (~3.4 eV) that can provide efficient ultraviolet (UV) light at room temperature (RT). The easily etched in acids and alkalis that provides the fabrication of small-size ZnO-based devices. Electrodeposition is the growth method that can deposit high quality film and modify the characterizations of film by changing its deposition electrolyte concentration, temperature, and current density. Firstly, the ZnO is deposited on n-type Si substrate by electrodeposition by different deposited temperature, electrolyte concentration, and current density. The deposited films contain zinc nitrate, metal Zn, and ZnO while electrodeposited at various deposition parameters. For the deposited film contains only ZnO, no UV light is found measured by macroscopic photoluminescent analysis even annealed at different ambient and temperature. According to previous papers, an ideal UV light intensity can be obtained by thermal treated metal Zn or Zn ion implantation into oxide materials after annealing. Annealing the Zn-ZnO structure formed in 30oC by electrodeposition can observe intense UV light. This method improves the disadvantages of insufficient light intensity and no UV light observation from conventionally electrodeposited ZnO. The variation of UV light wavelength of ZnO oxidized from metal Zn is associated with the quantum-confinement effect that was discussed by previous papers. It is found that the size of ZnO is not small enough to realize the quantum-confinement effect, herein, we suggest that the variation of UV light wavelength is affected by the metal Zn resides in ZnO. Otherwise, the electrodeposition of ZnO is not easily performed on p-type substrate, an aluminum film on the back side of p-type Si can deposit ZnO by smaller potential, and different ZnO nanostructures are obtained by modifying the current density. Recently, different characteristics were found in nano-size noble metal crystals. In this thesis, the porous structure of Au-ZnO and Pt-ZnO were co-deposited by electrodeposition to enhance the photocatalytic activity. Si is the dominant material in semiconductor technology, but its indirect band gap property makes it not allowed in optoelectronics application. However, since 1990, the visible light is observed from porous Si fabricated by electrochemically etching of Si; though the light mechanism of porous Si is not clear, it can be divided into two parts, the quantum-confinement effect of Si nanocrystals and surface states on porous Si. Porous Si emits efficient visible light, but its light wavelength is readily influence by environment. We developed three methods, electrochemically etching the pre-treated Si substrate, adding chemical solution into electrolyte during etching process, and post-treatment of Si substrate after etching to prevent the emission of porous Si from being affected by environment.
106

Pulsed laser ablation condensation of ZnO/Zn for artificial epitaxy and subsequence {hkil}-specific VLS growth

Huang, Bang-Hao 29 July 2008 (has links)
Wurtzite (W)-type ZnO condensates showed preferred orientation {10 1} when deposited on glass substrate by pulsed laser ablation on Zn target in the presence of oxygen. Such an artificial epitaxy depends on the well developed {10 1} surfaces of the condensates, which enabled {10 1}-specific coalescence to form twin and single crystal regardless of the co-deposited Zn. The W-ZnO condensates have decreasing particle size with increasing oxygen flow rate and a considerable residual stress due to the combined effects of rapid heating/cooling and thermal/lattice mismatch with Zn following parallel epitaxy or (01 )W-ZnO//(01 0)Zn; [ 2 3]W-ZnO//[0001]Zn involving {10 1} slip (Part I). In addition, wurtzite (W)-type ZnO/Zn composite deposit with preferred orientation {10 1}W-ZnO and (0001)Zn respectively on glass substrate in chapter I under Isothermal (600oC) atmospheric annealing caused self-catalyzed vapor-liquid-solid growth of rod-like W-ZnO whiskers with unusual habit. Analytical electron microscopic observations indicated that the W-ZnO whiskers extend along the zone axis of the well-developed polar surfaces {10 1} for a beneficial lower electrostatic energy and surface energy. Alternatively, the whiskers extend via {11 1}-specific growth twinning and/or coalescence twinning for a beneficial fair coincidence-site lattice at the twin boundary (Part II). Furthermore, Zn particulates overlain with wurtzite (W)-type ZnO condensates having nearly orthogonal {10 1} and {11 1} facets were found to self-catalyze unusual tapered W-ZnO whiskers upon isothermal atmospheric annealing, i.e. thermal oxidation, at 600oC. Analytical electron microscopic observations indicated that such whiskers formed tapered slabs having mosaic {10 1} and {2 1} twinned domains. The tapered whiskers can be rationalized by unconventional vapor-liquid-solid growth, i.e. {hkil}-specific coalescence twinning growth from the ZnO condensates taking advantage of a partially molten bottom source of Zn and the adsorption of atoms at the whisker tips and steps under the influence of capillarity effect (Part III). Finally, Electron irradiation of nano-size wurtzite (W)-type ZnO condensates with intimate mixture of parallel epitaxial Zn caused {10 1}W slip to form a single domain of rock salt (R)-type core and W-type shell. The two polymorphs follow (1 1)R//(0 11)W; [011]R//[ 2 3]W, i.e. chair type Peierls distortion with additional 38 degree tilting (001)R along the ( 2 0)W plane for a fair match of (10 1)W/(1 1)R, the same as one of the two paths for the back-transformation of R-ZnO into a lower crystal symmetry. The martensitic nucleation of R-type ZnO can be attributed to dynamic migration of interstitials/vacancies, lattice mismatch stress, and capillarity effect.
107

none

Huang, Shih-Yi 04 August 2009 (has links)
none
108

Foraminiferal assemblages as bioindicators of potentially toxic elements in Biscayne Bay, Florida

Carnahan, Elizabeth A 01 June 2005 (has links)
Heavy-metal pollution is an issue of concern in estuaries such as Biscayne Bay that are heavily influenced by agricultural, urban, and harbor activities. The goals of this study were to provide a state of the bay assessment that can be used to interpret changes that have occurred over the past 60 years in Biscayne Bay, to provide a baseline to compare changes in the ecosystems during and after execution of the Comprehensive Everglades Restorations Plan (CERP), and to determine if benthic foraminiferal assemblages in Biscayne Bay reflect heavy-metal contamination in sediments. Surficial samples were collected at 147 sites throughout the bay. Analyses included geochemical assessment of the mud fraction for 32 chemical parameters, grain-size analysis, and assessment of foraminiferal assemblages at the genus level. Geochemical analyses revealed elevated concentrations of a suite of heavy metals in the sediments of the northern bay, between Miami and Key Biscayne, and the periphery of the southern bay from Black Creek Canal south to Turkey Point. Cluster analysis, multi-dimensional scaling, and multivariate-correlation analyses revealed three distinct foraminiferal assemblages. One assemblage, characteristic of the northern bay, was defined by stress-tolerant taxa including Ammonia, Cribroelphidium, Nonion, and Haynesina, which were present in low abundances. Distribution of this assemblage correlated with the most elevated concentrations of heavy metals. The assemblage that defined the southwestern margin of the bay was dominated by Ammonia and Quinqueloculina. This assemblage is characterized by the lowest diversities and highest abundances, and is likely influenced by both reduced salinity and elevated organic-carbon concentrations.
109

Mineralogy and geochemistry of the non-sulfide Zn deposits in the Sierra Mojada district, Coahuila, Mexico

Ahn, Hye In 23 December 2010 (has links)
The Sierra Mojada district consists of multiple types of mineral concentrations ranging from polymetallic sulfide deposits, "non-sulfide Zn" (NSZ) deposits, and a Pb carbonate deposit hosted by Upper Jurassic to Lower Cretaceous carbonates. This study focuses on the two non-sulfide Zn deposits, the Smithsonite Manto and the Iron Oxide Manto, that occur south of the San Marcos fault. The Smithsonite Manto shows karst features, including internal sediments interbanded with smithsonite (ZnCO₃). The Iron Oxide Manto consists of strata-bound zones dominantly of hemimorphite (Zn₄Si₂O₇ (OH)₂·H₂O) that fills pores in Fe-oxides. The mineralogy of the NSZ mineralization consists of smithsonite, hemimorphite and Zn clays (sauconite) associated mainly with calcite and Mn-Fe-oxides. Zn clays are abundant in the Smithsonite Manto, but no Zn clays have been found in the Iron Oxide Manto. This project attempts to constrain the origin of the NSZ concentrations through petrographic and mineralogical study of major Zn-bearing minerals, and their carbon and oxygen stable isotopes and Pb isotope geochemistry. Smithsonite in the Smithsonite Manto occurs as botryoidal aggregates consisting of scalenohedral or rhombohedral microcrystals and banded colloform or massive smithsonite in open spaces, whereas smithsonite in the Iron Oxide Manto occurs as rhombic microcrystals grown in pore spaces or finely intergrown with Fe-oxides. Both Fe-poor and Fe-rich smithsonite are found in the Iron Oxide Manto. Under optical-CL, smithsonite displays complex growth zoning that can be related to variable trace element content. Trace elements semiquantitatively analyzed using LA-ICP-MS show that most blue luminescent smithsonite has lower Mn contents than pink to bright red luminescent zones in smithsonite. Preliminary fluid inclusion petrography in hemimorphite and calcite suggests that fluid composition can be related to precipitation of NSZ minerals from freshwater to slightly saline waters. Calculated salinities for two phase (liquid +vapor) and single phase (liquid) inclusions in hemimorphite range between 0.0 and 1.6 wt. % NaCl equivalent, and salinities of inclusions in calcite were between 0.0 and 1.1 wt. % NaCl equivalent. The oxygen isotope values for smithsonite are relatively constant (avg. [delta]¹⁸O[subscriptVSMOW] = 21.9 ± 0.5[per mille]), whereas [delta]¹³C[subscriptVPDB] values range from -8.4 to -1.1 [per mille]. The oxygen isotope values in late calcite are within the same range of smithsonite, whereas the average values of the carbon isotope are lower by 5 [per mille]. Formational temperature of smithsonite is calculated to be between 26 ~ 40 °C using the modern groundwater composition at Cuatro Ciénegas. Similar Pb isotopic compositions of smithsonite and cerussite to galena suggest the source of metals in the NSZ deposits presumably originate from the sulfide deposits. / text
110

A Geochemical Characterization of a Cold-Water Acid Rock Drainage Stream Emanating From the Zn-Pb XY-deposit, Howard's Pass, Yukon Territory, Canada

Feige, Kristen B. 08 February 2011 (has links)
An acid rock drainage (ARD) stream emanating from the Zn-Pb XY-deposit in the Yukon Territory was examined in order to evaluate the physico-chemical and geochemical processes governing the distribution of dissolved elements from the creek. The creek showed very high concentrations of metals (300 mg/L Fe, 500 mg/L Zn, 15 000 µg/L Ni, 1300 µg/L Cu and 4500 µg/L Cd), low water temperatures (1 – 12°C) and was acidic to moderately acidic (pH 3.1 – 5.0). It was found that this stream experienced a strong seasonal evolution, with increased sulphate and metal concentrations and decreased pH over the course of the summer. The mineral precipitates that formed under low pH conditions were a mixture of schwertmannite, goethite, jarosite and barite, while those that formed under moderately acidic conditions were a mixture of jurbanite, hydrobasaluminite, gibbsite and an X-ray amorphous Al-sulphate phase. Most of the mineral precipitates were of inorganic origin, although microbes may have played a role in mineral formation and trace metal sequestration in some of the precipitates. All of the mineral precipitates contained anomalous concentrations of trace elements (up to 1.5 % wt Zn) and showed a seasonal evolution in their mineralogy, both of which were determined to be a function of the pH and prevailing geochemical conditions. The geochemistry of the ARD creek draining the XY-deposit was compared to another ARD creek in the area that was likely draining shales. The two creeks were compared in order to determine if ARD geochemical characteristics can be used as a tool for the mineral exploration industry.

Page generated in 0.0277 seconds