• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 35
  • 20
  • 18
  • 15
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 282
  • 282
  • 181
  • 80
  • 56
  • 46
  • 43
  • 37
  • 34
  • 34
  • 32
  • 31
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

An Evaluation of Subcritical Crack Growth and Stress-Induced Transformation Toughening of 3Y-TZP

Rigby, Brent Lee 15 July 2009 (has links)
No description available.
112

[en] CREEP AND MECHANICAL PROPERTIES OF CEMENTITIOUS COMPOSITES REINFORCED WITH STEEL AND POLYPROPYLENE FIBER / [pt] FLUÊNCIA E PROPRIEDADES MECÂNICAS DE COMPÓSITOS CIMENTÍCIOS REFORÇADOS COM FIBRA DE AÇO E POLIPROPILENO

VICTOR NOGUEIRA LIMA 10 January 2020 (has links)
[pt] A fluência em compósito cimentício reforçado com fibra (CRF) no estado pré-fissurado tornou-se um importante tópico de estudo recentemente. Isso se deve ao fato de que o comportamento dependente do tempo do CRF e a estabilidade a longo prazo de fissuras sob cargas de flexão sustentadas ainda são pouco compreendidas. Este trabalho busca explorar o uso de fibras de aço e PP para definir sua influência na fluência, analisando a evolução das aberturas de fissuras com o tempo. O material foi inicialmente caracterizado sob testes de flexão de três e quatro pontos em amostras prismáticas com entalhe. Para os testes de fluência, os corpos de prova foram pré-fissurados a 0,5 mm e testados sob carga constante durante 45 dias. Para entender os mecanismos relacionados, testes de fluência também foram realizados em fibras e em uma configuração de arrancamento. Analisando os resultados dos testes de fluência, verificou-se que a taxa de COD (crack opening displacement) é uma ferramenta interessante para avaliar o comportamento a longo prazo do CRF fissurado e para definir um critério de estabilidade. Além disso, verificou-se que o concreto incorporando fibras sintéticas apresenta maiores deformações de fluência do que o reforçado com fibras de aço. Isso pode ser explicado pelas diferentes características das ligações fibra-matriz, analisadas pelos testes de arrancamento monotônico e de carga sustentada, e pela resposta de compressão do compósito. Finalmente, as propriedades residuais das amostras ensaiadas por fluência foram determinadas por testes monotônicos de flexão. / [en] Creep in pre-cracked fiber reinforced cementitious composites has become an important topic of study recently. This is due to the fact that the time dependent behaviour of FRC and long term stability of cracks under sustained bending loads are still poorly understood. This work seeks to explore the use of steel and PP fibers in order to define their influence on creep, by analyzing the crack opening displacement rate in FRC specimens. The material was first characterized under three and four-point bending tests in notched prismatic specimens. For the creep tests, the specimens were pre-cracked to 0.5 mm, and then tested under constant load during 45 days. In order to better understand the related mechanisms, creep tests were also carried on single fibers and in a fiber pullout configuration. Analyzing the creep tests results, it was verified that the COD rate is an interesting tool to evaluate the long-term behaviour of the cracked FRC and to define a stability criterion. In addition, it was found that concrete incorporating macro synthetic fibers presents higher creep deformations and higher creep rate than concrete reinforced with steel fibers. This can be explained by the different fiber-matrix bond characteristics, analyzed by monotonic and sustained load pullout tests, and by the compression response of the composite. Finally, the residual properties of creep tested specimens were determined by monotonic flexural tests performed in the FRC specimens after the creep tests.
113

Expansion of Conforming to Interface Structured Adaptive Mesh Refinement Algorithm to Higher Order Elements and Crack Propagation

Mohamadsalehi, Mohamad 30 August 2022 (has links)
No description available.
114

Life prediction of spot-welds: a fatigue crack growth approach

Newman, John Andrew 01 November 2008 (has links)
A life prediction method is developed for spot-welds subject to fatigue loading. Stress intensity factors are used with the Walker equation to develop two crack growth approaches to the problem. The predictions fit data for lap joint configurations well, but not so for peel joint geometries. / Master of Science
115

Lifetime prediction for rocks

Li, Xiang 13 November 2013 (has links) (PDF)
A lifetime prediction scheme is proposed based on the assumption that the lifetime (time to failure) of rocks under load is governed by the growth of microstructual defects (microcracks). The numerical approach is based on linear elastic fracture mechanics. The numerical calculation scheme is implemented as a cellular automat, where each cell contains a microcrack with length and orientation following certain distributions. The propagation of the microcrack is controlled by the Charles equation, based on subcritical crack growth. The zone inside the numerical model fails if the microcrack has reached the zone dimension or the stress intensity factor of the crack reached the fracture toughness. Macroscopic fractures are formed by these coalesced propagating microcracks, and finally lead to failure of the model. In the numerical approaches, elasto-plastic stress redistributions take place during the forming of the macroscopic fractures. Distinct microcrack propagation types have been programmed and applied to the proposed numerical models. These numerical models are studied under different loading conditions. Numerical results with excellent agreement with the analytical solutions are obtained with respective to predicted lifetime, important parameters for the microcracks, fracture pattern and damage evolution. Potential applications of the proposed numerical model schemes are investigated in some preliminary studies and simulation results are discussed. Finally, conclusions are drawn and possible improvements to the numerical approaches and extensions of the research work are given. / 本文认为微结构缺陷(微裂纹)的扩展决定了受力岩石的寿命(破坏时间)。基于此假设,提出了岩石寿命预测方法。利用线弹性断裂力学理论,通过FLAC进行了数值模拟。数值模型中每个单元定义一条初始裂纹,其长度与方向服从特定分布。基于亚临界裂纹扩展理论,由Charles方程决定微裂纹的扩展(速度)。如微裂纹发展至单元边界,或应力强度系数到达断裂韧度,则单元破坏。宏观裂纹由微裂纹所联合形成,并最终贯穿模型导致破坏。在形成宏观裂纹的过程中,发生弹塑性应力重分布。在数值模型中,编制了不同类型的微裂纹扩展方式,并在不同的受力条件下加以分析。数值模型的岩石寿命,裂纹形状,破坏方式以及一些重要的参数的数值模拟结果与解析解有较好的一致性。对本文所提出的数值模型的初步实际应用进行了分析,并讨论了计算结果。最后讨论了本文所提出的岩石寿命预测方法的可能改良与发展,并对进一步的研究工作给出建议。
116

Studies on the Modeling of Fatigue Crack Growth and Damage in Concrete : A Thermodynamic Approach

Khatoon, Pervaiz Fathima M January 2014 (has links) (PDF)
Fatigue in concrete is a complex phenomenon involving formation of microcracks, their coalescence into major crack and simultaneous formation of the fracture process zone ahead of the crack tip. Complex phenomena are best dealt through an energy approach and hence it is reasonable to use the theory of thermodynamics. Fracture mechanics and damage mechanics are two theories that are based on physically sound principles and are used to describe failure processes in materials. The former deals with the study of macroscopic cracks, whereas the latter defines the state of microcracking. In this study, the concepts from these theories are utilized to improve our understanding and modeling of fatigue process in concrete. In this thesis, a closed form expression for the thermodynamic function entropy is proposed and examined for its size independency and its use as a material property to characterize failure of concrete under fatigue. In the thermodynamic formalism, dissipative phenomena are described by a dissipation potential or its dual, from which evolution laws for internal variables could be defined. In this work, closed form expressions for dual of dissipation potential are derived using concepts of dimensional analysis and self-similarity within the framework of fracture mechanics and damage mechanics. Consequently, a fatigue crack propagation law and a fatigue damage evolution law are proposed respectively. A method is proposed in this study to correlate fracture mechanics and damage mechanics theories by equating the potentials obtained in each theory. Through this equivalence, a crack could be transformed into an equivalent damage zone and vice versa. Also, damage state corresponding to a given crack in a member can be quantified in terms of a damage index. An analytical way of computing size independent S-N curves is proposed, using a nonlocal damage theory by including aggregate size and specimen size in the formulation. It is realized from this study that fracture mechanics and damage mechanics theories should be used in a unified manner in order to accurately model the process of fatigue in concrete. Furthermore, based on the models developed in this study, several damage indicators for fatigue of concrete are proposed. The advantages and limitations of each of these indices are presented such that, the relevant damage index could be used, based on available parameters. Additionally, deterministic sensitivity studies are carried out to determine the most important parameters influencing fatigue life of a concrete member.
117

Vliv reziduálních napětí na odhad životnosti polymerních trubek / Influence of Residual Stress on Lifetime Prediction of Polymer Pipelines

Poduška, Jan January 2019 (has links)
The lifetime of plastic pipes for water supply and other applications is demanded to exceed at least 50 years. Such a long lifetime is difficult to prove by standard testing methods like the hydrostatic pres-sure test. However, it is possible to calculate an estimation of the lifetime, as the most frequently oc-curring mechanism of failure of plastic pipes is the creep crack propagation and subsequent failure. The method is based on describing the crack propagation by parameters of the linear-elastic fracture mechanics. An important part of this method is a finite element simulation of crack propagation in a pipe loaded by various types of loads. Residual stress, a side product of solidification after extrusion, is one of these loads. This thesis begins with an introductory part and literature review of the relevant topics – most of all the typical material properties of the pipe materials, mechanisms of failure, methods of residual stress determination suitable for plastic pipes and their results, methods of testing the materials and calculating lifetime. After the introduction, the problems to be solved are defined. The description of the residual stress state in the wall of various plastic pipes is the main topic. Both tangential (hoop) and axial residual stress in pipes of different dimensions and materials are determined using a combination of experiments and numerical simulations. Also, a simplified method of tangential residual stress is designed that can provide a sufficiently precise description of the tangential resid-ual stress state and is not difficult to carry out. A method to include the residual stress in the lifetime calculations and its influence on the lifetime is also dealt with. Apart from residual stress, the influence of soil loads in case of a buried pipe is studied. The residual stress can also influence the experimental determination of crack growth rate. If the CRB (cracked round bar) test is used to measure the crack growth rate, the crack can propagate asymmetrically due to the presence of residual stress in the specimens, which affects the results. Based on a finite element simulation of crack propagation in a CRB specimen, the severity of the influence is assessed.
118

Time-Dependent Rock Failure at Kartchner Caverns, Arizona

Roth, Karen January 2016 (has links)
Assessing long-term rock stability is an important aspect in the analysis of slopes, dam and bridge foundations, and other infrastructure. Rock behavior over tens to thousands of years must be anticipated when predicting the performance of, for example, an underground containment facility for nuclear waste. At such long time scales, the time dependence of rock failure, typically ignored in short time scale analyses, has a significant effect and must be included in the analysis. Since time-dependent rock behavior is thought to be caused by the subcritical growth of microcracks, a time-dependent analysis should incorporate a method of simulating subcritical crack growth. In this thesis, a rock bridge damage model was developed using the finite element program Abaqus to simulate subcritical crack growth for all three modes of crack tip displacement in three-dimensional rock masses. Since subcritical crack growth is not among the damage initiation and evolution criteria available in Abaqus, its effect was included in the model through the USDFLD user subroutine. Material properties for the damage model were obtained through laboratory fracture toughness testing of Escabrosa limestone from Kartchner Caverns. Tests included the grooved disk test for mode I, the punch-through shear with confining pressure test for mode II, and the circumferentially-notched cylindrical specimen test for mode III. The subcritical crack growth parameters n and A were calculated for all three modes using the constant stress-rate method. Fracture test results were compared with a previous study by Tae Young Ko at the University of Arizona, which tested Coconino sandstone and determined that the subcritical crack growth parameters were consistent among modes. This thesis expands upon Ko's work by adding the characterization of a second rock material in all three modes; results indicate that for Escabrosa limestone the subcritical crack growth parameters are not consistent among modes. Additionally, the Escabrosa limestone composing the caverns ranges from a more homogeneous, even-grained texture to a more heterogeneous texture consisting of coarse-grained veins and solution cavities set in a fine-grained matrix. To determine if the veined regions are more susceptible to fracturing and act as the nuclei of rock bridge failure, the fracture toughness tests were conducted separately for each texture. Results indicate that the more heterogeneous limestone has a higher fracture strength, fracture toughness, and subcritical crack growth index n than the more homogeneous limestone. This is in agreement with previous studies that determined that a more complex and heterogeneous microstructure produces a larger microcrack process zone and a more tortuous crack path, leading to higher fracture energies and larger values of n. Application of the rock bridge damage model to a simplified Kartchner cave room with a single roof block provided visualization of decreasing rock bridge size and produced time-to-failure estimates of 1,251 to 65,850 years. Multiple models were run to study the effect of (i) using material properties from each of the two textures identified in the Escabrosa limestone and (ii) varying the in-situ stress ratio, K. Both the value of K and the choice of Escabrosa texture had a large effect on the estimated time-to-failure, indicating that for future modeling of Kartchner accurate estimation of the in-situ stress ratio is as important as field identification of homogeneous vs. heterogeneous textures.
119

Structural, economic and material comparison of various steel grades under fatigue loading

Amobi, Ikechukwu Ugochukwu 28 March 2008 (has links)
ABSTRACT As industries are upgrading rapidly from a lower steel grade to higher ones it has become necessary to study the effect of changing from lower steel grades to higher grades. This thesis reports on fatigue life and behaviour, economic implications and material composition of these higher strength steels (HSS) as compared to the conventional grades. Three grades are commercially available in South Africa: 300W, 350W and 460W. These different steel grades (conventional and HSS) with the same moment capacities where subjected to constant dynamic stresses and the fatigue crack growth of the overloading and unloading were monitored and compared with each other. The influences of the overloading and unloading made standard grades perform better under repeated loading than the HSS, since HSS have been proved to have poor ductility, resulting in lower number of cycles to failure. An 85% increase in material cost was generated as HSS replaces the conventional lower steel grades. Reduction in number of cycles to failure in HSS was over 500%. A space analysis for a multi-storey building with 10 beam floors was conducted for the various steel grades using a software package. The buckling and linear behaviours of these structures were compared. Although the deflections were not too far apart, it was shown clearly that grade lower steel grades performed better than the higher grades. An optimization was conducted using the parameters discussed in the text or obtained from experiment and computer modelling, in order to aid in the selection criterion of general purpose steel. Grade 300W was the optimal grade although the result was based mainly on the cost and fatigue behaviour of the three grades.
120

Propagação de trincas em meios desordenados submetidos à fadiga induzida por carregamento cíclico / Fatigue crack growth in disordered media under ciclic load.

Araújo, Maycon de Sousa 12 August 2016 (has links)
Neste trabalho desenvolveremos um modelo estatístico em uma escala micrométrica de interações entre as componentes do sistema que pretende descrever a propagação de trincas em materiais submetidos a tensões cíclicas. Apesar de sua extrema simplicidade, este modelo é capaz de reproduzir um resultado experimental bastante difundido entre engenheiros e especialistas, conhecido como lei de Paris, cujo enunciado estabelece que a taxa de crescimento de uma trinca sob carregamento cíclico é proporcional a uma potência da variação em seu correspondente fator de intensidade de tensões sendo largamente utilizada em aplicações práticas. Estamos particularmente interessados em estudar a introdução de desordem em determinados parâmetros associados ao material investigando as modificações impostas por este tipo de abordagem ao comportamento estatístico do modelo. Nossos principais resultados serão obtidos numericamente a partir de uma aproximação do tipo campo efetivo que ignora a correlação existente entre as diversas trincas que podem se formar ao longo do sistema durante o processo. Simulações numéricas do modelo serão igualmente consideradas ao analisarmos situações mais gerais do processo de propagação em que efeitos associados à regeneração de trincas podem desempenhar um importante papel na descrição do comportamento mecânico de um material. / In this work we consider a statistical model in a micrometric scale of interactions between the components of the system which intends to describe the failure of materials subjected to cyclic-load fatigue. Although quite simple, this model is able to reproduce an important experimental result widespread among engineers and experts, known as Paris law, which states that the growth rate of a crack at subcritical load is proportional to a power of the change in its stress-intensity factor and it is largely used in engineering practice. We are particularly interested to study the introduction of disorder in some parameters of the material investigating the modifications caused by this kind of approach in the statistical properties of the model. Our main results will be obtained numerically assuming an effective-field like approximation which neglects the correlation between the different cracks emerging throughout the system during the breaking process. Numerical simulations of the model are also performed in order to describe more general situations of propagation where the effects of crack self-healing can play an important role in the material strength.

Page generated in 0.3241 seconds