• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 56
  • 54
  • 35
  • 13
  • 8
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 542
  • 542
  • 108
  • 90
  • 90
  • 90
  • 87
  • 76
  • 61
  • 60
  • 59
  • 55
  • 53
  • 53
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Élaboration d’agents de transfert fonctionnalisés, précurseurs de copolymères supramoléculaires par liaisons hydrogène et interactions hôte/invité / Design of functionalized chain transfer agents, precursors to supramolecular copolymers based on H-bonding and host/guest inclusion

Bertrand, Arthur 20 December 2011 (has links)
Au cours de la dernière décennie, quelques (rares) exemples de copolymères à blocs présentant des liens supramoléculaires entre les blocs constitutifs ont été décrits. En raison du caractère réversible de l’association des blocs macromoléculaires, de tels polymères sont d’un grand intérêt pour le développement de matériaux nanostructurés, ayant des propriétés auto-cicatrisantes ou à processabilité améliorée. L’objectif principal de cette thèse est d’élaborer de nouvelles architectures supramoléculaires, en combinant la polymérisation RAFT et l’association spécifique par liaisons H des groupements thymine et diaminopyridine. La stratégie employée a consisté dans un premier temps en la synthèse d’agents de transfert et d’un amorceur radicalaire fonctionnalisés par des unités complémentaires thymine et diaminopyridine. Ces précurseurs ont permis de générer, par polymérisation RAFT, des polymères α- ou α,ω-fonctionnalisés de manière quantitative par ces motifs à liaisons H. L’auto-assemblage des blocs polymères ainsi obtenus a été mis en évidence par RMN 1H, AFM et par des mesures rhéologiques. Cette démarche a été adaptée dans un second temps à l’élaboration de copolymères greffés supramoléculaires hydrophiles, basés sur le complexe d’inclusion β-cyclodextrine/adamantane. / Over the past decade, some (rare) examples of block copolymers with supramolecular links between the building blocks have been described. Because the association between macromolecular blocks is a reversible process, such polymers are of great interest in the field of nanostructured materials, self-healing materials, or processing aid. The main goal of this work is to develop new supramolecular architectures, by a combination of RAFT polymerization and H-bonding. In a first step, several chain transfer agents and a radical initiator possessing complementary thymine or diaminopyridine H-bonding moeties were synthesized. These precursors were used to generate a panel of polymers α- or α,ω-functionalized with these H-bonding stickers in a quantitative manner. The self-assembly of the resulting polymer blocks was highlighted by 1H NMR, AFM and rheological measurements. This approach was subsequently adapted to the development of hydrophilic supramolecular comb-shaped polymers, based on the β-cyclodextrin/adamantane host/guest complexation.
462

Sensing of Anions, Amines, Diols, and Saccharides by Supramolecular Fluorescent Sensors

Pushina, Mariia 06 August 2019 (has links)
No description available.
463

Synthesis and Interfacial Chemistry of Supramolecular Assemblies

Weingart, Jacob J. 06 December 2010 (has links)
No description available.
464

Étude et caractérisation de composés nitroso dérivés de l’adamantane

Chartier, Patrick 04 1900 (has links)
La cristallisation est un phénomène dans lequel les atomes ou molécules s’arrangent de manière hautement ordonnée. Il s’agit d’une des plus anciennes méthodes de purification. De plus, la structure cristalline d’un matériau influence ses propriétés. En métallurgie, par exemple, plusieurs opérations sont effectuées sur le métal, chacune affectant la structure cristalline et par le fait même les propriétés du matériau. Une compréhension des facteurs affectant la structure cristalline serait désirable en chimie des matériaux. Par exemple, dans le développement de matériaux poreux, la structure permettrait de moduler la quantité de vide dans un cristal et d’ajuster ainsi sa porosité. Prévoir l’organisation moléculaire est aussi désirable dans les panneaux solaires afin de bien positionner les composantes actives. Pour les polymères, le taux de cristallinité affecte directement les propriétés mécaniques telles que la densité et la dureté. La cristallisation se fait par étape. Au début, quelques particules commencent par se lier intermoléculairement de manière réversible. À ce moment de la cristallisation, la perte d’entropie contrebalance les bénéfices enthalpiques et le processus n’est pas favorisé thermodynamiquement. Une fois qu’un certain nombre de particules se sont lié, un noyau ou germe de nucléation est formé et à ce moment la cristallisation devient favorisée thermodynamiquement. Cette étape critique s’appelle la nucléation. La structure et la forme du noyau de nucléation servent de gabarit pour la construction subséquente du cristal. Après la germination vient la croissance épitaxiale. Comprendre l’étape de germination permet donc de moduler l’organisation moléculaire au tout début de la formation du cristal. Le projet présenté dans ce mémoire vise à examiner le phénomène de la nucléation à l’aide de molécules organiques conçues pour porter plusieurs groupements pouvant se lier réversiblement de manière covalente. Le nombre critique de molécules pour construire un noyau de cristallisation et la nature de leur association peuvent être étudiés. Le cœur organique choisi pour ces molécules est celui de l’adamantane car ses dérivés cristallisent bien en général et peuvent être fonctionnalisés facilement. Le groupement choisi pour pouvoir se lier réversiblement est le nitroso, qui s’associe pour générer des liaisons azodioxy. L’objectif du projet fut donc la synthèse et l’étude du comportement du mono-, di-, tri- et tétranitrosoadamantane. / Crystallization is a phenomenon in which atoms or molecules arrange themselves in a highly ordered fashion. It is one of the oldest methods of purification. In addition, the structure of a crystalline substance influences its properties. In metallurgy, for example, many operations are applied to metals in an effort to change the crystal structure and thus the properties of the material. Acquiring a full comprehension of the factors affecting crystallization is therefore a desirable goal in materials chemistry. In the area of porous solids, for example, modifying the structure can be used to modulate the amount of free space inside the solid. Similarly, controlling the molecular organization of the components of solar panels is needed to optimize performance. For polymers, the degree of crystallinity directly affects mechanical properties such as density and hardness. Molecular crystallization is a stepwise process. At the start, a few molecules associate reversibly. At this point, the loss of entropy counterbalances stabilizing enthalpic effects, and the process is not favored thermodynamically. Once a certain number of molecules have assembled, a seed or germ of nucleation is formed. It is at this moment that crystallization becomes spontaneous. This critical step is called nucleation. The structure and shape of the seed serves as a template for subsequent construction of the crystal. After the seed is formed, the crystal then undergoes epitaxial growth. Understanding the seeding step allows modulation of the crystal at the very beginning of its formation. The project described in the present Master’s thesis aims to study the phenomenon of nucleation using specially designed organic molecules. The idea is to use molecules comprising multiple groups that can associate reversibly by forming weak covalent bonds. The critical number of molecules needed to obtain a crystal nucleus and their manner of association can be studied. The organic core chosen is that of adamantane because its derivatives tend to crystallize well and functionalization is straightforward. The functional group chosen to favor strong but reversible association is nitroso, because nitroso compounds typically exist in equilibrium with azodioxy dimers. The objective of work summarized in the memoir is to synthesis, characterize, and examine the associative properties of mono-, di-, tri-, and tetranitrosoadamantane.
465

Curved Carbon Materials / Strained Macrocycles and Photomagnetic Switches

Grabicki, Niklas Jan 09 August 2023 (has links)
Das Ziel dieser Arbeit war die Synthese eindimensionaler Nanoröhren basierend auf leichten Elementen. Inspiriert von Kohlenstoff Nanoröhren werden Interessante Eigenschafte für diese Materialien erwartet. Aktuell ist die Synthese solcher Kohlenstoff Nanorohren nur mit vergleichsweise aufwendigen Methoden möglich. Hierbei stellt besonders die uniforme Synthese von Röhren mit exakt gleichen Durchmessern und Symmetrien ein noch ungelöstes Problem dar. Durch diese Arbeit erhofften wir uns eine völlig neue Arte der Synthese für solche 1D Nanomaterialien zu etablieren. Dazu wurden in Kapitel 2 und 3 zwei verschiedene Typen von gespannten aromatischen Makrozyklen synthetisiert. Die synthetisierten Makrozyklen zeichnen sich durch einen hohen Grad an Funktionalisierung aus, welcher zukünftig dazu genutzt werden soll die Prinzipien der dynamisch kovalenten Chemie in der finalen Materialsynthese anzuwenden. Der durch die Funktionalisierung erzeugte innere Hohlraum dieser zyklischen Verbindungen lässt sich nutzen, um verschiedene molekulare Gäste zu binden. Die Erkenntnisse in Bezug auf die Synthese solcher Makrozyklen, die hierbei erzielt wurden, werden entscheidend dazu beitragen, dass anfänglich beschriebene Ziel der nasschemischen Synthese 1D organischer Nanoröhren in Zukunft zu erreichen. Die Methoden, der Makrozyklisierung sollten in Kapitel 4 dazu genutzt werden einen chiralen aromatischen Makrozyklus auf Basis von [5]Helicen-Untereinheiten zu synthetisieren, allerdings ohne Erfolg. Stattdessen wurde ein Nebenprodukt isoliert, dass sich als bisher unbekannter molekulare Schalter erwies. Dieser Schalter erlaubt es durch Bestrahlung bei tiefen Temperaturen reversibel ein paramagnetisches Isomer zu erzeugen. Dadurch eröffnet sich eine völlig neue Klasse an molekularen Schaltern, deren Anwendungspotential den Rahmen dieser Arbeit überschreitet. / The aim of this work was the synthesis of one-dimensional nanotubes based on light elements. Inspired by carbon nanotubes, interesting properties for these materials are expected. Currently, the synthesis of such carbon nanotubes is only possible with comparatively complex methods. Especially the uniform synthesis of tubes with exactly the same diameters and symmetries is still an unsolved problem. Through this work we hoped to establish a completely new way of synthesis for such 1D nanomaterials. To this end, two different types of strained aromatic macrocycles were synthesized in Chapters 2 and 3. The synthesized macrocycles are characterized by a high degree of functionalization, which will be used in the future to apply the principles of dynamic covalent chemistry in the final material synthesis. The internal cavity of these cyclic compounds created by functionalization can be used to bind various molecular guests. The knowledge regarding the synthesis of such macrocycles obtained here will be instrumental in achieving the initially described goal of wet chemical synthesis of 1D organic nanotubes in the future. The methods of macrocyclization were to be used in Chapter 4 to synthesize a chiral aromatic macrocycle based on [5]helicene subunits, but without success. Instead, a byproduct was isolated that proved to be a previously unknown molecular switch. This switch allows reversible generation of a paramagnetic isomer by irradiation at low temperatures. This opens up a completely new class of molecular switches whose potential applications are beyond the scope of this work.
466

Terpyridine-Based Metallo-Supramolecular Architectures: From Structure to Function

Elbatal, Hany January 2013 (has links)
No description available.
467

Design and Synthesis of Terpyridine based Metallo-Supramolecular Architectures

Ludlow, James M., III January 2015 (has links)
No description available.
468

Design, Synthesis and Self-Assembly of Polymeric Building Blocks and Novel Ionic Liquids, Ionic Liquid-Based Polymers and Their Properties

Lee, Minjae 09 September 2010 (has links)
The convergence of supramolecular and polymer sciences has led to the construction of analogs of traditional covalently-constructed polymeric structures and architectures by supramolecular methods. Host-guest complexations of polymers are also possible through well-defined synthesis of polymeric building blocks, for novel supramolecular polymers. Monotopic polymeric building blocks were synthesized by controlled radical polymerizations with a crown or paraquat initiator. The combinations of terminal and central functionalities of host and guest polymeric building blocks provided chain-extended and tri-armed homopolymers, and diblock and tri-armed copolymers. A supramolecular graft copolymer was formed from a main-chain poly(ester crown ether) and a paraquat terminated polystyrene. This comb-like copolymer was characterized by a large viscosity increase. A four-armed polystyrene-b-poly(n-butyl methacrylate) was synthesized from a pseudorotaxane macroinitiator derived from a complex of a crown-centered polystyrene and a dufunctional paraquat compound. A single peak with higher molecular weight from size exclusion chromatography proved the copolymer formation. Supramolecular interactions enhance the ionic conductivity of semi-crystalline ionic polymers; the ionic conductivity of a C₆-polyviologen and dibenzo-30-crown-10 mixture was 100 times higher than the polyviologen itself. However, ionic conductivities of amorphous polyviologens with polyethers were influenced only by glass transition temperature changes. New imidazolium ionic liquid monomers and imidazolium based polymers were synthesized for potential applications in electroactive devices, such as actuators. Structure-property relationships for pendant imidazolium polyacrylates and main-chain imidazolium polyesters were investigated. Terminal ethyleneoxy moeties enhanced ionic conduction 2~3 times; however, the alkyl chain length effect was negligible. For the imidazoium polyesters, higher ion conductivities result from 1) mono-imidazolium over bis-imidazolium, and 2) bis(trifluoromethanesulfonyl)imide polymers over hexafluorophosphate analogs. A semi-crystalline hexafluorophosphate polyester with C₁₀-sebacate-C₁₀, displayed 400-fold higher ionic conductivity than the amorphous C₆-sebacate-C₆ analogue, suggesting the formation of a biphasic morphology in the former polyester. New dicationic imidazolium salts have interesting features. 1,2-Bis[N-(N'-alkylimidazoilum)]ethane salts stack well in the solid state and possess multiple solid-solid phase transitions. They complex with dibenzo-24-crown-8 and a dibenzo-24-crown-8 based pyridyl cryptand with <i>K<sub>a</sub></i> = ~30 and 360 M¹, respectively. Some of these dicationic imidazolium salts have low entropies of fusion, typical of plastic crystals. These newly discovered imidazolium homopolymers have ionic conductivities up to 10⁴ (S cm⁻¹); however, better properties are still required. Well-designed block copolymers should provide both good electrical and mechanical properties from bicontinuous morphologies, such ion channels. / Ph. D.
469

Engineering Coordination Cages With Generative AI / Konstruktion av Koordinationsburar med Generativ AI

Ahmad, Jin January 2024 (has links)
Deep learning methods applied to chemistry can speed the discovery of novel compounds and facilitate the design of highly complex structures that are both valid and have important societal applications. Here, we present a pioneering exploration into the use of Generative Artificial Intelligence (GenAI) to design coordination cages within the field of supramolecular chemistry. Specifically, the study leverages GraphINVENT, a graph-based deep generative model, to facilitate the automated generation of tetrahedral coordination cages. Through a combination of computational tools and cheminformatics, the research aims to extend the capabilities of GenAI, traditionally applied in simpler chemical contexts, to the complex and nuanced arena of coordination cages. The approach involves a variety of training strategies, including initial pre-training on a large dataset (GDB-13) followed by transfer learning targeted at generating specific coordination cage structures. Data augmentation techniques were also applied to enrich training but did not yield successful outcomes. Several other strategies were employed, including focusing on single metal ion structures to enhance model familiarity with Fe-based cages and extending training datasets with diverse molecular examples from the ChEMBL database. Despite these strategies, the models struggled to capture the complex interactions required for successful cage generation, indicating potential limitations with both the diversity of the training datasets and the model’s architectural capacity to handle the intricate chemistry of coordination cages. However, training on the organic ligands (linkers) yielded successful results, emphasizing the benefits of focusing on smaller building blocks. The lessons learned from this project are substantial. Firstly, the knowledge acquired about generative models and the complex world of supramolecular chemistry has provided a unique opportunity to understand the challenges and possibilities of applying GenAI to such a complicated field. The results obtained in this project have highlighted the need for further refinement of data handling and model training techniques, paving the way for more advanced applications in the future. Finally, this project has not only raised our understanding of the capabilities and limitations of GenAI in coordination cages, but also set a foundation for future research that could eventually lead to breakthroughs in designing novel cage structures. Further study could concentrate on learning from the linkers in future data-driven cage design projects. / Deep learning-metoder (djup lärande metoder) som tillämpas på kemi kan påskynda upptäckten av nya molekyler och underlätta utformningen av mycket komplexa strukturer som både är giltiga och har viktiga samhällstillämpningar. Här presenterar vi en banbrytande undersökning av användningen av generativ artificiell intelligens (GenAI) för att designa koordinationsburar inom supramolekylär kemi. Specifikt utnyttjar studien GraphINVENT, en grafbaserad djup generativ modell, för att underlätta den automatiska genereringen av tetraedriska koordinationsburar. Genom en kombination av beräkningsverktyg och kemiinformatik syftar forskningen till att utöka kapaciteten hos GenAI, som traditionellt tillämpas i enklare kemiska sammanhang, till den komplexa och nyanserade arenan för koordinationsburar. Metoden innebar inledande förträning på ett brett dataset (GDB-13) följt av transferinlärning inriktad på att generera specifika koordinationsburstrukturer. Dataförstärkningstekniker användes också för att berika träningen men gav inte några lyckade resultat. Flera strategier användes, inklusive fokusering på enstaka metalljonsystem för att förbättra modellens förtrogenhet med Fe-baserade burar och utöka träningsdataset med olika molekylära exempel från ChEMBL-databasen. Trots dessa strategier hade modellerna svårt att fånga de komplexa interaktioner som krävs för framgångsrik generering av burar, vilket indikerar potentiella begränsningar inom både mångfalden av träningsdataset och modellens arkitektoniska kapacitet att hantera den invecklade kemin i koordinationsburar. Däremot var träningen på de organiska liganderna (länkarna) framgångsrik, vilket betonar fördelarna med att fokusera på mindre byggstenar. Dock är fördelarna med detta projekt betydande. Den kunskap som förvärvats om hur generativa modeller fungerar och den komplexa världen av supramolekylär kemi har gett en unik möjlighet att förstå utmaningarna och möjligheterna med att tillämpa GenAI på ett så komplicerat område. Erfarenheterna har visat på behovet av ytterligare förfining av datahantering och modellträningstekniker, vilket banar väg för mer avancerade tillämpningar i framtiden. Det här projektet har inte bara ökat vår förståelse för GenAI:s möjligheter och begränsningar i koordinationsburar utan också lagt grunden för framtida forskning som i slutändan kan leda till banbrytande upptäckter i utformningen av nya burstrukturer. Ytterligare studier skulle kunna fokusera på att lära sig från länkarna för att hjälpa framtida datadrivna projekt för burdesign.
470

Studies in Metallosupramolecular Chemistry

Cottam, Justine Ruth Amy January 2008 (has links)
Metallosupramolecular chemistry involves the construction of nanoscale molecular assemblies by reacting metal atoms with bridging organic ligands. The metal atoms act as a type of molecular ‘glue’ binding together the organic ligands in specific orientations. Thus, appropriate combinations of metal ions and ligands lead to the controlled self-assembly of interesting one-, two- and three-dimensional molecular aggregates. This thesis details the preparation of a range of novel flexible bridging heterocyclic ligands using conventional organic synthesis, and then explores their reactions with a variety of transition metal precursors. By varying the nature of the organic ligand and the transition metal precursor, new and exciting supramolecular topologies and architectures can be formed. A total of forty-eight ligands were synthesised in this work, forty-seven of which are new compounds. The majority of the ligands synthesised were based around commercially available bisphenol cores. All forty-eight of the ligands had nitrogen heterocyclic groups as coordinating units. The ligands discussed in this thesis can be divided into three main sections. The first involves the synthesis and coordination chemistry of two-armed ligands based around the Bisphenol A, Bisphenol Z and Bisphenol AP cores. The second section describes the synthesis and coordination chemistry of the larger Bisphenol P and Bisphenol M based two-armed bridging ligands. The third section describes the synthesis and coordination chemistry of various multi-substituted ligands, including tripodal ligands based around a trisphenol core, four-armed ligands and six-armed ligands. The two-armed bisphenol based ligands proved very successful as synthons in metallosupramolecular chemistry and produced many products with a variety of different metal atoms. The complexes characterised included discrete dimeric products, coordination polymers and a number of helicates, including a dinuclear quadruply-stranded helicate. Multi-armed ligands are topical, because they have multiple coordination sites that are capable of binding and bridging multiple metal atoms. Such coordination can lead to the construction of cage-like species and complicated networks. A series of three-armed ligands based around a trisphenol core were synthesised with the intention to use these to form such species on coordination with appropriate metal salts. Indeed, one of the products of self-assembly was an interesting M₃L₂ cage. Various other multi-armed ligands were also investigated. The ligands and complexes in this thesis were characterised by a variety of structural techniques, such as ¹H NMR, ¹³C NMR, mass spectrometry, elemental analysis and X-ray crystallography when crystals were obtained. The crystal structures of twenty-seven ligands and forty-three complexes are described.

Page generated in 0.1516 seconds