• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 157
  • 64
  • 40
  • 30
  • 26
  • 22
  • 18
  • 9
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 739
  • 214
  • 122
  • 103
  • 70
  • 53
  • 53
  • 48
  • 47
  • 41
  • 41
  • 39
  • 38
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Developmental expression of N-methyl-D-aspartate and gamma-aminobutyric acid receptors in the rat basal ganglia

Lau, Wai Kit Jaeger 01 January 2004 (has links)
No description available.
62

Electrophysiological effects in the rat basal ganglia following systemic adenosine A2A receptor stimulation and dopamine D2 receptor blockade

Voicu, Cristian, n/a January 2008 (has links)
The difficulty with movement initiation, or akinesia, is a cardinal symptom of Parkinson�s disease (PD) and the loss of dopaminergic cells, affecting the function of the basal ganglia, the thalamus and the motor cortex, has long been documented. From a broader perspective, it has been proposed that akinesia is caused by impaired function in different brain areas, inside and outside the basal ganglia, operating as a �behavioural arrest control system� (Klemm, 2001). Several neurotransmitters seem to modulate the activity of this system and, contrasting the well-known effects of dopamine, the involvement of adenosine has only recently emerged, particularly via A2A receptors. Adenosine plays an opposite role to dopamine in the brain: adenosine stimulation at A2A receptors inhibits movement (Ferre et al., 1991a; Hauber and Munkle, 1995; Rimondini et al., 1997), whereas A2A antagonists seem to promote movement (Kanda et al., 2000; Bara-Jimenez et al., 2003; Pinna et al., 2005). Although specific adenosine A2A and dopamine D2 receptors are known to antagonistically interact (Ferre et al., 1997; Fuxe et al., 1998; Ferre et al., 2001), little is known of the involvement of A2A receptors in regulating neural activity in the basal ganglia, a crucial point for the future use of A2A antagonists as adjuvant therapy in Parkinson�s disease. In fact, although it is generally accepted that akinesia results from altered function in the cortico-basal ganglia-cortical loop, as confirmed in several studies reporting changes in basal ganglia activity following dopamine depletion (Blandini et al., 2000; Bevan et al., 2002; Boraud et al., 2002), no study to date has systematically investigated electrophysiological changes in the basal ganglia during akinesia induced by adenosine receptor stimulation. Starting from a common behavioural effect, this study tries to bridge this gap by investigating and comparing, in two basal ganglia structures, the neural substrate of akinesia after acute dopamine D2 receptor blockade and adenosine A2A receptor stimulation. The external segment of the globus pallidus (GP, or simply globus pallidus in the rat) and the substantia nigra pars reticulata (SNr) were chosen as the recording sites because both nuclei are included into the �behavioural arrest control system� and seem to express somewhat complementary functions, as a respective key integrative station and main output of the basal ganglia. Dopamine function was manipulated by acute decrease in availability of dopamine binding sites in the brain, through specific dopamine D2 receptor blockade with systemic injections (1.0 and 1.5 mg/kg) of raclopride(3,5-dichloro-N-[(1-ethylpyrrolidin-2-y)methyl]-2-hydroxy-6-methoxy-benzamide), resulting in akinesia. Conversely, movement was inhibited by specific adenosine A2A receptor stimulation with systemic injections (2.5 and 5.0 mg/kg) of the drug CGS21680 (sodium-2-p-carboxyethylphenylamino-5-N-carboxamidoadenosine). In both situations, behaviour was assessed through specific akinesia tests. Single neuron activity before injection and changes in the firing frequency and firing pattern occurring after injection have been analysed and compared for each cell recorded from GP and SNr, during periods of behavioural rest. Synchronised firing between cell pairs has also been assessed. However, the small number of cell pairs showing correlated firing in each structure after systemic injection of drugs was not statistically relevant for further analysis and interpretation of synchronised firing during drug induced akinesia. In our experiments, both drugs inhibited movement, albeit somewhat differently, with lack of rigidity and �flat� body position after adenosine stimulation. Dopamine blockade decreased mean firing rate and dramatically altered the firing pattern in both investigated structures, generally increasing burst activity (increased percentage of spikes in bursts, mean number of bursts, mean number of spikes per burst, mean intra-burst firing frequency) and decreasing regularity of firing (increased coefficient of variation of the inter-spike intervals). Increased burst activity in the rat basal ganglia in an acute model of parkinsonian akinesia, following systemic raclopride injections, confirmed the importance of changes in the firing pattern in PD. The only electrophysiological effect of systemic A2A stimulation was decreased mean firing rate in the GP, a weak effect that could not propagate towards output stations of the basal ganglia. The lack of changes in the firing pattern, at both input and output levels of the basal ganglia, suggests a correlation with the lack of rigidity in adenosine-stimulation-induced akinesia.
63

Effects of Different Silvicultural Treatments on the Distribution of Light in Upland Hardwood Forest Stands of the Cumberland Plateau.

Grayson, Stephen Frederick 01 December 2010 (has links)
Although manipulation of the light regime is a common goal of silvicultural treatments, the specific light conditions created are poorly documented for many forest types and geographic locations. To help quantify effects of silivicultural treatments on light conditions, basal area, canopy structure, and photosynthetically active radiation (PAR), collected both instantaneously and across time, were measured in central hardwood forests following silvicultural treatments. These measurements were used to: 1.) investigate the magnitudes of differences in understory percent ambient PAR following implementation of shelterwood and thinning treatments; 2.) document the specific amount and variability of understory percent ambient PAR in shelterwood treatments (mean residual basal area=21 ft2/ac [4.8 m2/ha]), thinning (78 ft2/ac [17.9 m2/ha]), and untreated controls (18 ft2/ac[4.1 m2/ha); and 3.) Examine relationships between: basal area and canopy cover; basal area and measured percent ambient PAR; and canopy cover and measured percent ambient PAR. It was found that greater light levels resulted from greater canopy removals. Indexes of variability in light across time and among locations within a stand were higher in the shelterwood and thinning treatments than in the uncut control. Simple linear regression relationships were observed between basal area and PAR (r2= 0.8784 for instantaneous measurements, r2= 0.9697 for continuous measurements), and basal area and canopy cover (r2=0.8479). Such relationships provide a means for including light management in forest planning and application of silivicultural treatments.
64

Functionally relevant basal ganglia subdivisions in first-episode schizophrenia

Khorram, Babak 05 1900 (has links)
Schizophrenia is among the most debilitating mental disorders, yet the pathophysiology remains unclear. The basal ganglia, a region of the brain involved in motor, cognitive, and sensory processes, may be involved in the pathophysiology of schizophrenia. Some, but not all, neuroimaging studies suggest abnormalities of the basal ganglia in schizophrenia. However, previous studies have examined whole basal ganglia nuclei as opposed to using a unified basal ganglia complex that incorporates anterior-posterior divisions, dorsal-ventral divisions, and gray-white matter segmentation. The hypothesis for the present study was that basal ganglia sub-regions forming functionally relevant subdivisions might be different in schizophrenia. Magnetic resonance imaging scans were acquired from 25 first-episode schizophrenia subjects and 24 healthy subjects. Using manual and automated neuroimaging techniques, total and segmented (gray-white matter) volumes were obtained for the caudate, putamen, and globus pallidus. For the striatum (caudate and putamen), total and segmented volumes were obtained for their respective sub-regions. These sub-regions were restructured into associative, limbic, and sensorimotor subdivisions. Schizophrenia subjects had 6% smaller gray matter volumes for the caudate and 8% smaller gray matter volumes for the associative striatum relative to healthy subjects. Basal ganglia function was studied by examining performance on a neuropsychological test that assesses frontostriatal functioning. For male subjects there was a significant negative correlation between volume of the associative striatum and performance on the neuropsychological test (r=-0.57, p=0.03). Smaller volumes of the associative striatum were associated with more errors on the neuropsychological test. This test was specific to the associative striatum, as another neuropsychological test did not reveal any correlation. In schizophrenia subjects, the relationship between basal ganglia volumes and motor symptoms severity was examined. For antipsychotic-naive subjects there was a significant negative correlation between volume of the motor striatum and severity of Parkinsonism (r=-0.65, p=0.03). The present study suggests that total basal ganglia nuclei volumes are not different in schizophrenia, but gray matter volumes of total basal ganglia nuclei and subdivisions forming functional units may be different in schizophrenia. Structural abnormalities involving the basal ganglia may lead to disrupted functional circuits in schizophrenia.
65

A Role for a Novel β-catenin Binding Protein in Epithelial-mesenchymal Transitions and Breast Cancer Progression

Sikorski, Lindsay 02 June 2011 (has links)
Epithelial-mesenchymal transition (EMT) has a critical role in tumor progression and has been correlated with the basal-like subtype of human breast cancers. Here I report a novel β-catenin binding protein, which I have shown to be expressed in invasive breast cancer and hypothesized to have a role in breast tumor progression. In normal breast tissue, expression is restricted to the myoepithelium while in breast cancer the expression pattern is similar to smooth muscle actin and vimentin. I have demonstrated that silencing of this protein in breast tumor cells reduces migration by over 50 percent. Furthermore, I have identified this β-catenin binding protein as a target of the Snail EMT network and have demonstrated this protein to be a marker of basal-like carcinomas. These results define a role for this novel protein in EMT, as a marker for the basal subtype, and a promising therapeutic target for metastasis inhibition.
66

A Role for a Novel β-catenin Binding Protein in Epithelial-mesenchymal Transitions and Breast Cancer Progression

Sikorski, Lindsay 02 June 2011 (has links)
Epithelial-mesenchymal transition (EMT) has a critical role in tumor progression and has been correlated with the basal-like subtype of human breast cancers. Here I report a novel β-catenin binding protein, which I have shown to be expressed in invasive breast cancer and hypothesized to have a role in breast tumor progression. In normal breast tissue, expression is restricted to the myoepithelium while in breast cancer the expression pattern is similar to smooth muscle actin and vimentin. I have demonstrated that silencing of this protein in breast tumor cells reduces migration by over 50 percent. Furthermore, I have identified this β-catenin binding protein as a target of the Snail EMT network and have demonstrated this protein to be a marker of basal-like carcinomas. These results define a role for this novel protein in EMT, as a marker for the basal subtype, and a promising therapeutic target for metastasis inhibition.
67

A Search For Principles of Basal Ganglia Function

Tripp, Bryan January 2008 (has links)
The basal ganglia are a group of subcortical nuclei that contain about 100 million neurons in humans. Different modes of basal ganglia dysfunction lead to Parkinson's disease and Huntington's disease, which have debilitating motor and cognitive symptoms. However, despite intensive study, both the internal computational mechanisms of the basal ganglia, and their contribution to normal brain function, have been elusive. The goal of this thesis is to identify basic principles that underlie basal ganglia function, with a focus on signal representation, computation, dynamics, and plasticity. This process begins with a review of two current hypotheses of normal basal ganglia function, one being that they automatically select actions on the basis of past reinforcement, and the other that they compress cortical signals that tend to occur in conjunction with reinforcement. It is argued that a wide range of experimental data are consistent with these mechanisms operating in series, and that in this configuration, compression makes selection practical in natural environments. Although experimental work is outside the present scope, an experimental means of testing this proposal in the future is suggested. The remainder of the thesis builds on Eliasmith & Anderson's Neural Engineering Framework (NEF), which provides an integrated theoretical account of computation, representation, and dynamics in large neural circuits. The NEF provides considerable insight into basal ganglia function, but its explanatory power is potentially limited by two assumptions that the basal ganglia violate. First, like most large-network models, the NEF assumes that neurons integrate multiple synaptic inputs in a linear manner. However, synaptic integration in the basal ganglia is nonlinear in several respects. Three modes of nonlinearity are examined, including nonlinear interactions between dendritic branches, nonlinear integration within terminal branches, and nonlinear conductance-current relationships. The first mode is shown to affect neuron tuning. The other two modes are shown to enable alternative computational mechanisms that facilitate learning, and make computation more flexible, respectively. Secondly, while the NEF assumes that the feedforward dynamics of individual neurons are dominated by the dynamics of post-synaptic current, many basal ganglia neurons also exhibit prominent spike-generation dynamics, including adaptation, bursting, and hysterses. Of these, it is shown that the NEF theory of network dynamics applies fairly directly to certain cases of firing-rate adaptation. However, more complex dynamics, including nonlinear dynamics that are diverse across a population, can be described using the NEF equations for representation. In particular, a neuron's response can be characterized in terms of a more complex function that extends over both present and past inputs. It is therefore straightforward to apply NEF methods to interpret the effects of complex cell dynamics at the network level. The role of spike timing in basal ganglia function is also examined. Although the basal ganglia have been interpreted in the past to perform computations on the basis of mean firing rates (over windows of tens or hundreds of milliseconds) it has recently become clear that patterns of spikes on finer timescales are also functionally relevant. Past work has shown that precise spike times in sensory systems contain stimulus-related information, but there has been little study of how post-synaptic neurons might use this information. It is shown that essentially any neuron can use this information to perform flexible computations, and that these computations do not require spike timing that is very precise. As a consequence, irregular and highly-variable firing patterns can drive behaviour with which they have no detectable correlation. Most of the projection neurons in the basal ganglia are inhibitory, and the effect of one nucleus on another is classically interpreted as subtractive or divisive. Theoretically, very flexible computations can be performed within a projection if each presynaptic neuron can both excite and inhibit its targets, but this is hardly ever the case physiologically. However, it is shown here that equivalent computational flexibility is supported by inhibitory projections in the basal ganglia, as a simple consequence of inhibitory collaterals in the target nuclei. Finally, the relationship between population coding and synaptic plasticity is discussed. It is shown that Hebbian plasticity, in conjunction with lateral connections, determines both the dimension of the population code and the tuning of neuron responses within the coded space. These results permit a straightforward interpretation of the effects of synaptic plasticity on information processing at the network level. Together with the NEF, these new results provide a rich set of theoretical principles through which the dominant physiological factors that affect basal ganglia function can be more clearly understood.
68

A Search For Principles of Basal Ganglia Function

Tripp, Bryan January 2008 (has links)
The basal ganglia are a group of subcortical nuclei that contain about 100 million neurons in humans. Different modes of basal ganglia dysfunction lead to Parkinson's disease and Huntington's disease, which have debilitating motor and cognitive symptoms. However, despite intensive study, both the internal computational mechanisms of the basal ganglia, and their contribution to normal brain function, have been elusive. The goal of this thesis is to identify basic principles that underlie basal ganglia function, with a focus on signal representation, computation, dynamics, and plasticity. This process begins with a review of two current hypotheses of normal basal ganglia function, one being that they automatically select actions on the basis of past reinforcement, and the other that they compress cortical signals that tend to occur in conjunction with reinforcement. It is argued that a wide range of experimental data are consistent with these mechanisms operating in series, and that in this configuration, compression makes selection practical in natural environments. Although experimental work is outside the present scope, an experimental means of testing this proposal in the future is suggested. The remainder of the thesis builds on Eliasmith & Anderson's Neural Engineering Framework (NEF), which provides an integrated theoretical account of computation, representation, and dynamics in large neural circuits. The NEF provides considerable insight into basal ganglia function, but its explanatory power is potentially limited by two assumptions that the basal ganglia violate. First, like most large-network models, the NEF assumes that neurons integrate multiple synaptic inputs in a linear manner. However, synaptic integration in the basal ganglia is nonlinear in several respects. Three modes of nonlinearity are examined, including nonlinear interactions between dendritic branches, nonlinear integration within terminal branches, and nonlinear conductance-current relationships. The first mode is shown to affect neuron tuning. The other two modes are shown to enable alternative computational mechanisms that facilitate learning, and make computation more flexible, respectively. Secondly, while the NEF assumes that the feedforward dynamics of individual neurons are dominated by the dynamics of post-synaptic current, many basal ganglia neurons also exhibit prominent spike-generation dynamics, including adaptation, bursting, and hysterses. Of these, it is shown that the NEF theory of network dynamics applies fairly directly to certain cases of firing-rate adaptation. However, more complex dynamics, including nonlinear dynamics that are diverse across a population, can be described using the NEF equations for representation. In particular, a neuron's response can be characterized in terms of a more complex function that extends over both present and past inputs. It is therefore straightforward to apply NEF methods to interpret the effects of complex cell dynamics at the network level. The role of spike timing in basal ganglia function is also examined. Although the basal ganglia have been interpreted in the past to perform computations on the basis of mean firing rates (over windows of tens or hundreds of milliseconds) it has recently become clear that patterns of spikes on finer timescales are also functionally relevant. Past work has shown that precise spike times in sensory systems contain stimulus-related information, but there has been little study of how post-synaptic neurons might use this information. It is shown that essentially any neuron can use this information to perform flexible computations, and that these computations do not require spike timing that is very precise. As a consequence, irregular and highly-variable firing patterns can drive behaviour with which they have no detectable correlation. Most of the projection neurons in the basal ganglia are inhibitory, and the effect of one nucleus on another is classically interpreted as subtractive or divisive. Theoretically, very flexible computations can be performed within a projection if each presynaptic neuron can both excite and inhibit its targets, but this is hardly ever the case physiologically. However, it is shown here that equivalent computational flexibility is supported by inhibitory projections in the basal ganglia, as a simple consequence of inhibitory collaterals in the target nuclei. Finally, the relationship between population coding and synaptic plasticity is discussed. It is shown that Hebbian plasticity, in conjunction with lateral connections, determines both the dimension of the population code and the tuning of neuron responses within the coded space. These results permit a straightforward interpretation of the effects of synaptic plasticity on information processing at the network level. Together with the NEF, these new results provide a rich set of theoretical principles through which the dominant physiological factors that affect basal ganglia function can be more clearly understood.
69

The Basal Ganglia as a Structure of Vocal Sensory-Motor Integration and Modulation of Vocal Plasticity in Mammals: Behavioral and Experimental Evidence from Tadarida brasiliensis

Tressler, Jedediah Tim 2010 December 1900 (has links)
The neural mechanisms underlying vocal motor control are poorly understood in mammalian systems. Particularly lacking are details pertaining to the mechanisms and neuroanatomical basis of sensory-motor integration and vocal plasticity, both of which are thought to be essential for evolutionarily advanced vocal behaviors like birdsong or human speech. Based on clinical evidence and imaging studies in humans, as well as its known significance for motor control in general, the basal ganglia (BG) have been hypothesized as a key site for audio-vocal integration, but direct evidence of this is lacking. In this dissertation, I will fill this gap by providing experimental evidence that the basal ganglia are an important component of the forebrain vocal motor pathway. First, I present two examples of vocal plasticity in Tadarida brasiliensis that can serve as powerful behavioral assays of audio-vocal integration. Secondly I provide evidence of BG functions in audio-vocal integration by knocking down striatal dopamine levels with the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyrridine (MPTP). Finally, I will utilize the D1-type receptor specific agonist SKF82958 and antagonist SCH23390 to examine how the direct pathway of the BG regulates vocal production and sensorymotor integration. The behavioral results of these experiments indicate that the bats have a complex and context depended vocal response to noise stimuli that can be used to examine the neurological control of vocal plasticity. Further, the pharmacological evidence demonstrated that the BG was necessary for maintaining and modulating normal muscle force during vocal production. Finally, the mechanism of action in the basal ganglia was found to depend at least partly on activity at D1-type dopamine receptors. The results of this dissertation support the hypothesis that the BG is a critical structure in the modulation of vocal commands in the forebrain vocal-motor pathway. Pathological or pharmacological disruption of dopamine signaling severely degraded the bats abilities to produce natural sounding calls or make adaptive changes to the acoustic environment. These results have implications for research into the treatment of basal ganglia disorders such as Parkinson’s disease, providing an animal model for the study of hypokinetic dysarthria.
70

Neuropsychological consequences of pallidal lesions and subthalamic stimulation for the treatment of Parkinsonian patients

Trepanier, Lisa Laura. January 2000 (has links)
Thesis (Ph. D.)--York University, 2000. Graduate Programme in Psychology. / Typescript. Includes bibliographical references (leaves 209-273). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ59157.

Page generated in 0.0481 seconds