• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2606
  • 912
  • 381
  • 347
  • 331
  • 101
  • 66
  • 49
  • 40
  • 36
  • 34
  • 32
  • 31
  • 27
  • 26
  • Tagged with
  • 5945
  • 1424
  • 873
  • 728
  • 722
  • 669
  • 492
  • 492
  • 480
  • 448
  • 421
  • 414
  • 386
  • 366
  • 341
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1291

Srovnání optimalizačních metod pro odhad perfúzních parametrů / Comparison of optimization methods for perfusion parameters estimation

Kříž, Marek January 2016 (has links)
The content of this thesis is to understand the principle of ultrasound imaging and mathematical models used to estimate perfusion parameters of concentration curves. Thesis deals with global optimization algorithms for finding parameters, an approximation of the actual data model curves. It also includes a comparison of different methods and used functions.
1292

Modelling and simulation framework incorporating redundancy and failure probabilities for evaluation of a modular automated main distribution frame

Botha, Marthinus Ignatius January 2013 (has links)
Maintaining and operating manual main distribution frames is labour-intensive. As a result, Automated Main Distribution Frames (AMDFs) have been developed to alleviate the task of maintaining subscriber loops. Commercial AMDFs are currently employed in telephone exchanges in some parts of the world. However, the most significant factors limiting their widespread adoption are costeffective scalability and reliability. Therefore, an impelling incentive is provided to create a simulation framework in order to explore typical implementations and scenarios. Such a framework will allow the evaluation and optimisation of a design in terms of both internal and external redundancies. One of the approaches to improve system performance, such as system reliability, is to allocate the optimal redundancy to all or some components in a system. Redundancy at the system or component levels can be implemented in one of two schemes: parallel redundancy or standby redundancy. It is also possible to mix these schemes for various components. Moreover, the redundant elements may or may not be of the same type. If all the redundant elements are of different types, the redundancy optimisation model is implemented with component mixing. Conversely, if all the redundant components are identical, the model is implemented without component mixing. The developed framework can be used both to develop new AMDF architectures and to evaluate existing AMDF architectures in terms of expected lifetimes, reliability and service availability. Two simulation models are presented. The first simulation model is concerned with optimising central office equipment within a telephone exchange and entails an environment of clients utilising services. Currently, such a model does not exist. The second model is a mathematical model incorporating stochastic simulation and a hybrid intelligent evolutionary algorithm to solve redundancy allocation problems. For the first model, the optimal partitioning of the model is determined to speed up the simulation run efficiently. For the second model, the hybrid intelligent algorithm is used to solve the redundancy allocation problem under various constraints. Finally, a candidate concept design of an AMDF is presented and evaluated with both simulation models. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Electrical, Electronic and Computer Engineering / unrestricted
1293

The multi-terminal vertex separator problem : Complexity, Polyhedra and Algorithms / Le problème du séparateur de poids minimum : Complexité, Polyèdres et Algorithmes

Magnouche, Youcef 26 June 2017 (has links)
Étant donné un graphe G = (V U T, E), tel que V U T représente l'ensemble des sommets où T est un ensemble de terminaux, et une fonction poids w associée aux sommets non terminaux, le problème du séparateur de poids minimum consiste à partitionner V U T en k + 1 sous-ensembles {S, V1,..., Vk} tel qu'il n'y a aucune arête entre deux sous-ensembles différents Vi et Vj, chaque Vi contient exactement un terminal et le poids de S est minimum. Dans cette thèse, nous étudions le problème d'un point de vue polyèdral. Nous donnons deux formulations en nombres entiers pour le problème, et pour une de ces formulations, nous étudions le polyèdre associé. Nous présentons plusieurs inégalités valides, et décrivons des conditions de facette. En utilisant ces résultats, nous développons un algorithme de coupes et branchement pour le problème. Nous étudions également le polytope des séparateurs dans les graphes décomposables par sommets d'articulation. Si G est un graphe qui se décompose en G1 et G2, alors nous montrons que le polytope des séparateurs dans G peut être décrit à partir de deux systèmes linéaires liés à G1 et G2. Ceci donne lieu à une technique permettant de caractériser le polytope des séparateurs dans les graphes qui sont récursivement décomposables. Ensuite, nous étudions des formulations étendues pour le problème et proposons des algorithmes de génération de colonnes et branchement ainsi que des algorithmes de génération de colonnes, de coupes et branchement. Pour chaque formulation, nous présentons un algorithme de génération de colonnes, une procedure pour le calcul de la borne duale ainsi qu'une règle de branchement. De plus, nous présentons quatre variantes du problème du séparateur. Nous montrons que celles-ci sont NP-difficiles, et pour chacune d'elles nous donnons une formulation en nombres entiers et présentons certaines classes d'inégalités valides. / Given a graph G = (V U T, E) with V U T the set of vertices, where T is a set of terminals, and a weight function w, associated with the nonterminal nodes, the multi-terminal vertex separator problem consists in partitioning V U T into k + 1 subsets {S, V1,..., Vk} such that there is no edge between two different subsets Vi and Vj, each Vi contains exactly one terminal and the weight of S is minimum. In this thesis, we consider the problem from a polyhedral point of view. We give two integer programming formulations for the problem, for one of them, we investigate the related polyhedron. We describe some valid inequalities and characterize when these inequalities define facets. Using these results, we develop a Branch-and-Cut algorithm for the problem. We also study the multi-terminal vertex separator polytope in the graphs decomposable by one node cutsets. If G is a graph that decomposes into G1 and G2, we show that the multi-terminal vertex separator polytope in G can be described from two linear systems related to G1 and G2. This gives rise to a technique for characterizing the multi-terminal vertex separator polytope in the graphs that are recursively decomposable. Moreover, we propose three extended formulations for the problem and derive Branch-and-Price and Branch-and-Cut-and-Price algorithms. For each formulation we present a column generation scheme, the way to compute the dual bound, and the branching scheme. Finally, we discuss four variants of the multi-terminal vertex separator problem. We show that all these variants are NP-hard and for each one we give an integer programming formulation and present some class of valid inequalities.
1294

The factoring of large integers by the novel Castell-Fact-Algorithm, 12th part - continuation

Tietken, Tom, Castell-Castell, Nikolaus 02 September 2020 (has links)
Continuation of the 12th part: Complement and correction of the novel Tietken-Castell-Prime-Algorithm
1295

Non-centralized distributed algorithm to locate nearby servers based on player positions for a MMOG server cluster

Östman, Alexander January 2015 (has links)
In this thesis a non-centralized algorithm is proposed to locate nearby servers based on their players’ positions in a massive multiplayer online game server cluster. The purpose of this is to enable that players can visually see each other even though they are connected to different servers. By utilizing peer to peer connection between the servers the algorithm is tolerant against possible hardware failures. The algorithm simplifies the data sent over the network with a new concave polygon creation algorithm which works in linear execution time, enabling fast computations for real-time games. The algorithm works by finding colliding polygons from other servers and the closest polygons based on distance to find nearby servers which information should be shared with. Those two algorithms at this time work in quadratic execution time which is a point of improvement, which could require the concave polygon to be converted into one or several convex polygons. The algorithm is designed to give the user good access on the amount of network traffic sent over the cluster which gives better control and understanding on how much network traffic that will be sent in the cluster. It shows that the algorithm is dependent on how players in the world are distributed over the servers. By having players nearby each other on the same server improves the result of the algorithm. It is shown that compared to having a centralized server, the network traffic on every single node have reduced network traffic than compared to a centralized server. / In den här uppsatsen presenteras en icke-centraliserad algoritm som hittar närliggande servrar baserat på deras spelares positioner i ett massivt multi-spelare online spel med flera servrar. Syftet är att möjliggöra att spelare från olika servrar kan se varandra visuellt även fast de är uppkopplade till olika servrar. Genom att använda sig av ”peer-to-peer” kommunikation i klustret blir algoritmen tolerant mot hårdvarufel. Algoritmen simplifierar data som skickas genom en ny typ av konkav polygon algoritm vilken fungerar i linjär exekveringstid, vilket möjliggör snabba beräkningar för realtidsspel. Algoritmen fungerar genom att hitta kolliderande polygoner från andra servrar och även de mest närliggande baserat på distans för att lokalisera närliggande servrar att dela information med. De här två algoritmerna arbetar i kvadratisk tid vilket skulle kunna förbättras. Detta kan kräva att konkava polygonen konverteras till en eller flera konvexa polygoner. Algoritmen är designad för att ge användaren bra tillgång till hur mycket nätverkstrafik som bör skickas inom klustret vilket ger en bättre kontroll och förståelse över hur mycket data som kommer att skickas totalt. Det visas att algoritmen är beroende av hur spelarna är distribuerade över servrarna. Genom att ha närliggande spelare i världen på samma server förbättras resultatet av algoritmen. Det visas även att jämfört med en centraliserad server så förbättras nätverkstrafiken på varje enskild nod jämfört med trafiken som mottogs av den centraliserade servern.
1296

De-quantizing quantum machine learning algorithms

Sköldhed, Stefanie January 2022 (has links)
Today, a modern and interesting research area is machine learning. Another new and exciting research area is quantum computation, which is the study of the information processing tasks accomplished by practising quantum mechanical systems. This master thesis will combine both areas, and investigate quantum machine learning. Kerenidis’ and Prakash’s quantum algorithm for recommendation systems, that offered exponential speedup over the best known classical algorithms at the time, will be examined together with Tang’s classical algorithm regarding recommendation systems, which operates in time only polynomial slower than the previously mentioned algorithm. The speedup in the quantum algorithm was achieved by assuming that the algorithm had quantum access to the data structure and that the mapping to the quantum state was performed in polylog(mn). The speedup in the classical algorithm was attained by assuming that the sampling could be performed in O(logn) and O(logmn) for vectors and matrices, respectively.
1297

Optimization of Pile Groups : A practical study using Genetic Algorithm and Direct Search with four different objective functions

Bengtlars, Ann, Väljamets, Erik January 2014 (has links)
Piling is expensive but often necessary when building large structures, for example bridges. Some pile types, such as steel core piles, are very costly and it is therefore of great interest to keep the number piles in a pile group to a minimum. This thesis deals with optimization of pile groups with respect to placement, batter and angle of rotation in order to minimize the number of piles. A program has been developed, where two optimization algorithms named Genetic Algorithm and Direct Search, and four objective functions have been used. These have been tested and compared to find the most suitable for pile group optimization. Three real cases, two bridge supports and one culvert, have been studied, using the program.  It has been difficult to draw any clear conclusions since the results have been ambiguous. This is probably because only three cases have been tested and the results are very problemdependent.The outcome depends, for example, on the starting guess and settings for the optimization. However, the results show that the Genetic Algorithm is somewhat more robust in its ability to remove piles than Direct Search and is therefore to prefer in pile group optimization.
1298

The factoring of large integers by the novel Castell-Fact-Algorithm, 12th part

Tietken, Tom, Castell-Castell, Nikolaus 12 August 2020 (has links)
The Prague Research Institute owns an self-developed algorithm (so-called 'Castell-fact-algorithm'), which is able to factorize unlimited large integers in an elegant and fast way. Because the experts are ignoring our information about it or even contradicting this fact (saying, 'it is not possible'), we hereby file subsequently another fast-developed, small algorithm as a 'teaser' (the so-called 'Tietken-Castell-Prime-Algorithm'), which can demonstrate the simple, efficient and creative operating principles of the Prague Research Institute. We call this Tietken-Castell-Prime-Algorithm 'creative', because it does not really create and identify prime numbers (at this assignment we are still working), but reach the same effect by a simple indirect procedure: With the assistence of a self-constructing and accumulating register (the so-called 'Tietken-Castell-register') prime numbers can also be a) created as well as b) identified and even big numbers, as far as they are already registered can practically be 'factorized' by reading out their prime-factors inside the register.
1299

Possibilities to identify prime numbers without RSA decryption algorithm and to decipher RSA encryptions indirectly (using a special list)

Castell-Castell, Nikolaus, Tietken, Tom 12 April 2021 (has links)
No description available.
1300

Constructive cooperative coevolution for optimising interacting production stations

Glorieux, Emile January 2015 (has links)
Engineering problems have characteristics such as a large number of variables, non-linear, computationally expensive, complex and black-box (i.e. unknown internal structure). These characteristics prompt difficulties for existing optimisation techniques. A consequence of this is that the required optimisation time rapidly increases beyond what is practical. There is a needfor dedicated techniques to exploit the power of mathematical optimisation tosolve engineering problems. The objective of this thesis is to investigate thisneed within the field of automation, specifically for control optimisation ofautomated systems.The thesis proposes an optimisation algorithm for optimising the controlof automated interacting production stations (i.e. independent stations thatinteract by for example material handling robots). The objective of the optimisation is to increase the production rate of such systems. The non-separable nature of these problems due to the interactions, makes them hard to optimise.The proposed algorithm is called the Constructive Cooperative CoevolutionAlgorithm (C3). The thesis presents the experimental evaluation of C3, bothon theoretical and real-world problems. For the theoretical problems, C3 istested on a set of standard benchmark functions. The performance, robustness and convergence speed of C3 is compared with the algorithms. This shows that C3 is a competitive optimisation algorithm for large-scale non-separable problems.C3 is also evaluated on real-world industrial problems, concerning thecontrol of interacting production stations, and compared with other optimisation algorithms on these problems. This shows that C3 is very well-suited for these problems. The importance of considering the energy consumption and equipment wear, next to the production rate, in the objective function is also investigated. This shows that it is crucial that these are considered to optimise the overall performance of interacting production stations.

Page generated in 0.0486 seconds