• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 751
  • 339
  • 172
  • 67
  • 47
  • 44
  • 32
  • 15
  • 12
  • 12
  • 11
  • 10
  • 7
  • 6
  • 5
  • Tagged with
  • 1761
  • 1761
  • 344
  • 310
  • 304
  • 204
  • 184
  • 172
  • 155
  • 151
  • 143
  • 139
  • 132
  • 126
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
891

Annual Report 2014 - Institute of Resource Ecology

10 March 2015 (has links) (PDF)
The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden – Rossendorf (HZDR). The research activities are mainly integrated into the program “Nuclear Waste Management, Safety and Radiation Research (NUSAFE)” of the Helmholtz Association (HGF) and focused on the topics “Safety of Nuclear Waste Disposal” and “Safety Research for Nuclear Reactors”. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program “Energy Efficiency, Materials and Resources (EMR)”. Both programs, and therefore all work which is done at IRE, belong to the research sector “Energy” of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks exerted by radioactive and nonradioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants, and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes, and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.
892

Dynamic Optimization of Integrated Active - Passive Strategies for Building Enthalpy Control

Zhang, Rongpeng 01 May 2014 (has links)
The building sector has become the largest consumer of end use energy in the world, exceeding both the industry and the transportation sectors. Extensive types of energy saving techniques have been developed in the past two decades to mitigate the impact of buildings on the environment. Instead of the conventional active building environmental control approaches that solely rely on the mechanical air conditioning systems, increasing attention is given to the passive and mixed-mode approaches in buildings. This thesis aims to explore the integration of passive cooling approaches and active air conditioning approaches with different dehumidification features, by making effective use of the information on: 1) various dynamic response properties of the building system and mechanical plants, 2) diverse variations of the building boundary conditions over the whole operation process, 3) coupling effect and synergistic influence of the key operational parameters, and 4) numerous parameter conflicts in the integrated active-passive operation. These issues make the proposed integration a complex multifaceted process operation problem. In order to deal with these challenges, a systematic approach is developed by integrating a number of advanced building/system physical models and implementing well established advanced dynamic optimization algorithms. Firstly, a reduced-order model development and calibration framework is presented to generate differential-algebraic equations (DAE) based physical building models, by coupling with the high-order building energy simulations (i.e., EnergyPlus) and implementing MLE+ co-simulation programs in the Matlab platform. The reduced-order building model can describe the dynamic building thermal behaviors and address substantial time delay effects intrinsic in the building heat transfer and moisture migration. A calibration procedure is developed to balance the modelling complexity and the simulation accuracy. By making use of the advanced modeling and simulation features of EnergyPlus, the developed computational platform is able to handle real buildings with various geometric configurations, and offers the potential to cooperate with the dominant commercial building modeling software existing in the current AEC industry. Secondly, the physical model for the active air conditioning systems is developed, which is the other critical part for the dynamic optimization. By introducing and integrating a number of sub-models developed for specific building components, the model is able to specify the dynamic hygrothermal behavior and energy performance of the system under various operating conditions. Two representative air conditioning systems are investigated as the study cases: variable air volume systems (VAV) with mechanical dehumidification, and the desiccant wheel system (DW) with chemical dehumidification. The control variables and constraints representing the system operational characteristics are specified for the dynamic optimization. Thirdly, the integrated active-passive operations are formulated as dynamic optimization problems based on the above building and system physical models. The simultaneous collocation method is used in the solution algorithm to discretize the state and control variables, translating the optimization formulation into a nonlinear program (NLP). After collocation, the translated NLP problems for the daily integrated VAV/DW operation for a case zone have 1605/2181 variables, 1485/2037 equality constraints and 280/248 inequality constraints, respectively. It is found that IPOPT is able to provide the optimal solution within minutes using an 8-core 64-bit desktop, which illustrates the efficiency of the problem formulation. The case study results indicate that the approach can effectively improve the energy performance of the integrated active-passive operations, while maintaining acceptable indoor thermal comfort. Compared to the conventional local control strategies, the optimized strategies lead to remarkable energy saving percentages in different climate conditions: 29.77~48.76% for VAV and 27.85~41.33% for DW. The energy saving is contributed by the improvement of both the passive strategies (around 33%) and active strategies (around 67%). It is found that the thermal comfort constraint defined in the optimization also affects the energy saving. The total optimal energy consumption drops by around 3% if the value of the predicted percentage dissatisfied (PPD) limit is increased by one unit between 5~15%. It is also found that the fitted periodic weather data can lead to similar operation strategies in the dynamic optimization as the realistic data, and therefore can be a reasonable alternative when the more detailed realistic weather data is not available. The method described in the thesis can be generalized to supervise the operation design of building systems with different configurations.
893

Energy-efficient and performance-aware virtual machine management for cloud data centers

Takouna, Ibrahim January 2014 (has links)
Virtualisierte Cloud Datenzentren stellen nach Bedarf Ressourcen zur Verfügu-ng, ermöglichen agile Ressourcenbereitstellung und beherbergen heterogene Applikationen mit verschiedenen Anforderungen an Ressourcen. Solche Datenzentren verbrauchen enorme Mengen an Energie, was die Erhöhung der Betriebskosten, der Wärme innerhalb der Zentren und des Kohlendioxidausstoßes verursacht. Der Anstieg des Energieverbrauches kann durch ein ineffektives Ressourcenmanagement, das die ineffiziente Ressourcenausnutzung verursacht, entstehen. Die vorliegende Dissertation stellt detaillierte Modelle und neue Verfahren für virtualisiertes Ressourcenmanagement in Cloud Datenzentren vor. Die vorgestellten Verfahren ziehen das Service-Level-Agreement (SLA) und die Heterogenität der Auslastung bezüglich des Bedarfs an Speicherzugriffen und Kommunikationsmustern von Web- und HPC- (High Performance Computing) Applikationen in Betracht. Um die präsentierten Techniken zu evaluieren, verwenden wir Simulationen und echte Protokollierung der Auslastungen von Web- und HPC- Applikationen. Außerdem vergleichen wir unser Techniken und Verfahren mit anderen aktuellen Verfahren durch die Anwendung von verschiedenen Performance Metriken. Die Hauptbeiträge dieser Dissertation sind Folgendes: Ein Proaktives auf robuster Optimierung basierendes Ressourcenbereitstellungsverfahren. Dieses Verfahren erhöht die Fähigkeit der Hostes zur Verfüg-ungsstellung von mehr VMs. Gleichzeitig aber wird der unnötige Energieverbrauch minimiert. Zusätzlich mindert diese Technik unerwünschte Ände-rungen im Energiezustand des Servers. Die vorgestellte Technik nutzt einen auf Intervall basierenden Vorhersagealgorithmus zur Implementierung einer robusten Optimierung. Dabei werden unsichere Anforderungen in Betracht gezogen. Ein adaptives und auf Intervall basierendes Verfahren zur Vorhersage des Arbeitsaufkommens mit hohen, in kürzer Zeit auftretenden Schwankungen. Die Intervall basierende Vorhersage ist implementiert in der Standard Abweichung Variante und in der Median absoluter Abweichung Variante. Die Intervall-Änderungen basieren auf einem adaptiven Vertrauensfenster um die Schwankungen des Arbeitsaufkommens zu bewältigen. Eine robuste VM Zusammenlegung für ein effizientes Energie und Performance Management. Dies ermöglicht die gegenseitige Abhängigkeit zwischen der Energie und der Performance zu minimieren. Unser Verfahren reduziert die Anzahl der VM-Migrationen im Vergleich mit den neu vor kurzem vorgestellten Verfahren. Dies trägt auch zur Reduzierung des durch das Netzwerk verursachten Energieverbrauches. Außerdem reduziert dieses Verfahren SLA-Verletzungen und die Anzahl von Änderungen an Energiezus-tänden. Ein generisches Modell für das Netzwerk eines Datenzentrums um die verzö-gerte Kommunikation und ihre Auswirkung auf die VM Performance und auf die Netzwerkenergie zu simulieren. Außerdem wird ein generisches Modell für ein Memory-Bus des Servers vorgestellt. Dieses Modell beinhaltet auch Modelle für die Latenzzeit und den Energieverbrauch für verschiedene Memory Frequenzen. Dies erlaubt eine Simulation der Memory Verzögerung und ihre Auswirkung auf die VM-Performance und auf den Memory Energieverbrauch. Kommunikation bewusste und Energie effiziente Zusammenlegung für parallele Applikationen um die dynamische Entdeckung von Kommunikationsmustern und das Umplanen von VMs zu ermöglichen. Das Umplanen von VMs benutzt eine auf den entdeckten Kommunikationsmustern basierende Migration. Eine neue Technik zur Entdeckung von dynamischen Mustern ist implementiert. Sie basiert auf der Signal Verarbeitung des Netzwerks von VMs, anstatt die Informationen des virtuellen Umstellung der Hosts oder der Initiierung der VMs zu nutzen. Das Ergebnis zeigt, dass unsere Methode die durchschnittliche Anwendung des Netzwerks reduziert und aufgrund der Reduzierung der aktiven Umstellungen Energie gespart. Außerdem bietet sie eine bessere VM Performance im Vergleich zu der CPU-basierten Platzierung. Memory bewusste VM Zusammenlegung für unabhängige VMs. Sie nutzt die Vielfalt des VMs Memory Zuganges um die Anwendung vom Memory-Bus der Hosts zu balancieren. Die vorgestellte Technik, Memory-Bus Load Balancing (MLB), verteilt die VMs reaktiv neu im Bezug auf ihre Anwendung vom Memory-Bus. Sie nutzt die VM Migration um die Performance des gesamtem Systems zu verbessern. Außerdem sind die dynamische Spannung, die Frequenz Skalierung des Memory und die MLB Methode kombiniert um ein besseres Energiesparen zu leisten. / Virtualized cloud data centers provide on-demand resources, enable agile resource provisioning, and host heterogeneous applications with different resource requirements. These data centers consume enormous amounts of energy, increasing operational expenses, inducing high thermal inside data centers, and raising carbon dioxide emissions. The increase in energy consumption can result from ineffective resource management that causes inefficient resource utilization. This dissertation presents detailed models and novel techniques and algorithms for virtual resource management in cloud data centers. The proposed techniques take into account Service Level Agreements (SLAs) and workload heterogeneity in terms of memory access demand and communication patterns of web applications and High Performance Computing (HPC) applications. To evaluate our proposed techniques, we use simulation and real workload traces of web applications and HPC applications and compare our techniques against the other recently proposed techniques using several performance metrics. The major contributions of this dissertation are the following: proactive resource provisioning technique based on robust optimization to increase the hosts' availability for hosting new VMs while minimizing the idle energy consumption. Additionally, this technique mitigates undesirable changes in the power state of the hosts by which the hosts' reliability can be enhanced in avoiding failure during a power state change. The proposed technique exploits the range-based prediction algorithm for implementing robust optimization, taking into consideration the uncertainty of demand. An adaptive range-based prediction for predicting workload with high fluctuations in the short-term. The range prediction is implemented in two ways: standard deviation and median absolute deviation. The range is changed based on an adaptive confidence window to cope with the workload fluctuations. A robust VM consolidation for efficient energy and performance management to achieve equilibrium between energy and performance trade-offs. Our technique reduces the number of VM migrations compared to recently proposed techniques. This also contributes to a reduction in energy consumption by the network infrastructure. Additionally, our technique reduces SLA violations and the number of power state changes. A generic model for the network of a data center to simulate the communication delay and its impact on VM performance, as well as network energy consumption. In addition, a generic model for a memory-bus of a server, including latency and energy consumption models for different memory frequencies. This allows simulating the memory delay and its influence on VM performance, as well as memory energy consumption. Communication-aware and energy-efficient consolidation for parallel applications to enable the dynamic discovery of communication patterns and reschedule VMs using migration based on the determined communication patterns. A novel dynamic pattern discovery technique is implemented, based on signal processing of network utilization of VMs instead of using the information from the hosts' virtual switches or initiation from VMs. The result shows that our proposed approach reduces the network's average utilization, achieves energy savings due to reducing the number of active switches, and provides better VM performance compared to CPU-based placement. Memory-aware VM consolidation for independent VMs, which exploits the diversity of VMs' memory access to balance memory-bus utilization of hosts. The proposed technique, Memory-bus Load Balancing (MLB), reactively redistributes VMs according to their utilization of a memory-bus using VM migration to improve the performance of the overall system. Furthermore, Dynamic Voltage and Frequency Scaling (DVFS) of the memory and the proposed MLB technique are combined to achieve better energy savings.
894

Quantifying the Transition to Low-carbon Cities

Mohareb, Eugene 30 August 2012 (has links)
Global cities have recognized the need to reduce greenhouse gas (GHG) emissions and have begun to take action to balance of the carbon cycle. This thesis examines the nuances of quantification methods used and the implications of current policy for long-term emissions. Emissions from waste management, though relatively small when compared with building and transportation sectors, are the largest source of emissions directly controlled by municipal government. It is important that municipalities understand the implications of methodological selection when quantifying GHG emissions from waste management practices. The “Waste-in-Place” methodology is presented as the most relevant for inventorying purposes, while the “Methane Commitment” approach is best used for planning. Carbon sinks, divided into “Direct” and “Embodied”, are quantified using the Greater Toronto Area (GTA) as a case study. “Direct” sinks, those whose sequestration processes occur within urban boundaries, contribute the largest share of carbon sinks with regional forests providing a significant proportion. “Embodied” sinks, those whose sequestration processes (or in the case of concrete, the processes that enable sequestration) are independent of the urban boundary, can contribute to the urban carbon pool, but greater uncertainty exists in upstream emissions as the management/processing prior to its use as a sink are generally beyond the consumer’s purview. The Pathways to Urban Reductions in Greenhouse gas Emissions (or PURGE) model is developed as a means to explore emissions scenarios resulting from urban policy to mitigate climate change by quantifying future carbon sources/sinks (from changes in building stock, vehicle stock, waste treatment and urban/regional forests). The model suggests that current policy decisions in the GTA provide short-term reductions but are not sufficient in the long term to balance the pressures of economic and population growth. Aggressive reductions in energy demand from personal transportation and existing building stock will be necessary to achieve long-term emissions targets.
895

Quantifying the Transition to Low-carbon Cities

Mohareb, Eugene 30 August 2012 (has links)
Global cities have recognized the need to reduce greenhouse gas (GHG) emissions and have begun to take action to balance of the carbon cycle. This thesis examines the nuances of quantification methods used and the implications of current policy for long-term emissions. Emissions from waste management, though relatively small when compared with building and transportation sectors, are the largest source of emissions directly controlled by municipal government. It is important that municipalities understand the implications of methodological selection when quantifying GHG emissions from waste management practices. The “Waste-in-Place” methodology is presented as the most relevant for inventorying purposes, while the “Methane Commitment” approach is best used for planning. Carbon sinks, divided into “Direct” and “Embodied”, are quantified using the Greater Toronto Area (GTA) as a case study. “Direct” sinks, those whose sequestration processes occur within urban boundaries, contribute the largest share of carbon sinks with regional forests providing a significant proportion. “Embodied” sinks, those whose sequestration processes (or in the case of concrete, the processes that enable sequestration) are independent of the urban boundary, can contribute to the urban carbon pool, but greater uncertainty exists in upstream emissions as the management/processing prior to its use as a sink are generally beyond the consumer’s purview. The Pathways to Urban Reductions in Greenhouse gas Emissions (or PURGE) model is developed as a means to explore emissions scenarios resulting from urban policy to mitigate climate change by quantifying future carbon sources/sinks (from changes in building stock, vehicle stock, waste treatment and urban/regional forests). The model suggests that current policy decisions in the GTA provide short-term reductions but are not sufficient in the long term to balance the pressures of economic and population growth. Aggressive reductions in energy demand from personal transportation and existing building stock will be necessary to achieve long-term emissions targets.
896

Lifetime Analysis For Wireless Sensor Networks

Ogunlu, Bilal 01 August 2004 (has links) (PDF)
Sensor technologies are vital today in gathering information about certain environments and wireless sensor networks are getting more widespread use everyday. These networks are characterized by a number of sensor nodes deployed in the field for the observation of some phenomena. Due to the limited battery capacity in sensor nodes, energy efficiency is a major and challenging problem in such power-constrained networks. Some of the network design parameters have a direct impact on the network&rsquo / s lifetime. These parameters have to be chosen in such a way that the network use its energy resources efficiently. This thesis studies these parameters that should be selected according to certain trade offs with respect to the network&rsquo / s lifetime. In this work, these trade offs have been investigated and illustrated in detail in various combinations. To achieve this goal, a special simulation tool has been designed and implemented in this work that helps in analyzing the effects of the selected parameters on sensor network&rsquo / s lifetime. OMNeT++, a discrete event simulator, provides the framework for the sensor network simulator&rsquo / s development. Ultimately, results of extensive computational tests are presented, which may be helpful in guiding the sensor network designers in optimally selecting the network parameters for prolonged lifetime.
897

Kommunikation och kunskap för minskad energiförbrukning under produktionsfasen / Communication and knowledge for decreased energy consumption during the production phase

Bucht, Caroline, Korhonen, Joanna January 2018 (has links)
Syfte: Studien avser energiförbrukning i produktionsfasen och fokuserar på hur kommunikationen kring energiförbrukningen kan minska den. Mycket fokus läggs idag på att minska en byggnads energiförbrukning under förvaltningsskedet, medan det finns saknat fokus kring produktionsfasens energiförbrukning. En av de största svårigheterna med en hållbar utveckling i byggsektorn är att varje projekt är unikt, vilket gör det svårt för inblandade parter att lära sig från tidigare erfarenheter och dela kunskap mellan olika projekt och aktörer, varvid vikten av en fungerande kommunikation ökar. Målet med denna studie är därför att minska byggproduktionens miljöpåverkan gällande energiförbrukning, genom att förbättra kommunikationen mellan inblandade parter. Metod: Denna studie är utförd som en fallstudie för ett specifikt projekt hos en av Sveriges största bygg- och fastighetsutvecklingsföretag. Metoder för att besvara studiens frågeställningar och samla empiri är litteraturstudier, dokumentanalys av interna dokument och intervjuer med inblandade parter i produktionsfasen. Resultat: Då den mesta kommunikationen kring miljöfrågor sker centralt och det finns en osäkerhet kring vems ansvar miljöfrågan ligger under ett projekt, leder till att det blir en personfråga och påverkas av hur stort intresse involverade personer har i miljö och hållbarhet. Resultatet visar att det i dagsläget läggs lite fokus på energiförbrukning under produktionsfasen. Byggtorkning är det moment med högst energiförbrukning och har därmed störst potential att minska dess koldioxidutsläpp. Konsekvenser: Studien visar att personligt intresse för miljö, prioritering samt tilldelning av resurser kan minska på energiförbrukningen under ett projekt. Genom att detta omfattas av KMA-samordnarens arbetsuppgifter innebär det att frågan adresseras och att energibesparingar kan göras. Begränsningar: Studien begränsas till större entreprenadföretag och studerar enbart energiförbrukningen från arbetsmomenten grundläggning, stombyggnad och yttre stomkomplettering i produktionsfasen på en platsbyggd betongstomme. Studien tar sålunda inte hänsyn till energiförbrukning av den tillfälliga fabriken. Respondenter till intervjuer har valts utifrån sakkunnighet och involveringsgrad i energieffektivisering på byggarbetsplatsen. / Purpose: The study addresses energy consumption in the production phase and focuses on how communication about energy consumption can reduce it. Most focus is currently on reducing the energy consumption of a building during the operation phase, while there is a lack of focus on the energy consumption in the production phase. One of the biggest difficulties with sustainable development in the construction industry is that each project is unique, making it difficult for parties involved to learn from previous experiences and share knowledge between different projects and actors, thereby increasing the importance of a working communication. The aim of this study is therefore to reduce the environmental impact of the construction phase concerning energy consumption, by improving communication between parties involved. Method: This study is performed as a case study for a specific project at one of the largest construction and property development companies in Sweden. Methods to answer the questions of the study and gather empirical data are literature studies, document analysis and interviews with parties involved in the production phase. Findings: Since most of the communication is handled centrally and there is an uncertainty about whose responsibility the environmental issue is during a project, it becomes a personalized question and depending on the personal interest for the environment and sustainability is for the people involved. The results show that there is currently a lack of focus on the energy consumption during the production phase. The drying of the concrete structure is the phase with the highest energy consumption and therefore has the greatest potential for reducing its carbon dioxide emissions. Implications: The study shows that personal interest for the environment, prioritization and allocation of resources can reduce energy consumption during a project. By including this in the QHSE-coordinator's tasks, implies in addressing the issue and energy savings can be made. Limitations: The study is limited to major contractors and only studies the energy consumption from the work stages foundation, framing and lock up in the production phase of a site-built concrete frame. The study does not therefore consider the energy consumption of the temporary factory. Respondents to the interviews have been selected based on expertise and involvement in energy efficiency at the construction site.
898

The emergence of low carbon development in China and India : energy efficiency as a lens

Ma, Yuge January 2015 (has links)
Low-carbon development (LCD) in China and India is crucial to global sustainability. As representatives of the emerging world, China and India have to tackle the LCD challenge at the same time as they address rapid urbanization, industrialization and globalization, making this process an unprecedented problem in policy and practice. My dissertation uses a comparative perspective to examine the unique institutional change processes of China and India's LCD during the period of late 1970s to the present day - through the lens of energy efficiency (EE). I argue that despite the manifold differences in political, economic and social contexts in contemporary China and India, the process of institutional development and change in EE reveals some similar mechanisms. I investigate the common mechanisms through a five-phase framework, and find: First, in both countries, EE was initially triggered by complicated interactions between international and domestic crises. Second, through processes of political negotiation led by various policy groups, EE was conceived and planned by each state to embody not one single objective but multiple political, economic and social development goals. Third, in order to realize EE, an organizational complex formed within an existing governance structure. Fourth, detailed policy processes (which both shape and are shaped by their institutional settings) emerged from the previous stages. Finally, EE institutions are stabilized jointly through legalization and the establishment of specialist technical subfields. I argue that the key mechanism of the five-phase process of institutional change is the bundling structure between EE organizations and the host governance structure. While in China the latter is the structure of economic governance, in India it is that of energy governance. These bundling structures imprinted multiple path-dependencies from the host governance structure to the newly developed EE regime, which in turn determine the long-term impact of EE on LCD in China and India. My original contributions are threefold. First, this project is one of the first scholarly attempts to systematically make sense of LCD in large and complex countries with fast economic growth by using the perspective of institutional change. Second, drawing on broad theoretical resources and through an interdisciplinary exploration, the thesis tries to construct a cause-effect, systemic, and political-economic theory of LCD in contemporary China and India. Finally, my comparative framework adds a systemic and nuanced methodological viewpoint to the emerging field of multidisciplinary China-India comparative scholarship.
899

From the conventional MIMO to massive MIMO systems : performance analysis and energy efficiency optimization

Fu, Wenjun January 2017 (has links)
The main topic of this thesis is based on multiple-input multiple-output (MIMO) wireless communications, which is a novel technology that has attracted great interest in the last twenty years. Conventional MIMO systems using up to eight antennas play a vital role in the urban cellular network, where the deployment of multiple antennas have significantly enhanced the throughput without taking extra spectrum or power resources. The massive MIMO systems “scales” up the benefits that offered by the conventional MIMO systems. Using sixty four or more antennas at the BS not only improves the spectrum efficiency significantly, but also provides additional link robustness. It is considered as a key technology in the fifth generation of mobile communication technology standards network, and the design of new algorithms for these two systems is the basis of the research in this thesis. Firstly, at the receiver side of the conventional MIMO systems, a general framework of bit error rate (BER) approximation for the detection algorithms is proposed, which aims to support an adaptive modulation scheme. The main idea is to utilize a simplified BER approximation scheme, which is based on the union bound of the maximum-likelihood detector (MLD), whereby the bit error rate (BER) performance of the detector for the varying channel qualities can be efficiently predicted. The K-best detector is utilized in the thesis because its quasi- MLD performance and the parallel computational structure. The simulation results have clearly shown the adaptive K-best algorithm, by applying the simplified approximation method, has much reduced computational complexity while still maintaining a promising BER performance. Secondly, in terms of the uplink channel estimation for the massive MIMO systems with the time-division-duplex operation, the performance of the Grassmannian line packing (GLP) based uplink pilot codebook design is investigated. It aims to eliminate the pilot contamination effect in order to increase the downlink achievable rate. In the case of a limited channel coherence interval, the uplink codebook design can be treated as a line packing problem in a Grassmannian manifold. The closed-form analytical expressions of downlink achievable rate for both the single-cell and multi-cell systems are proposed, which are intended for performance analysis and optimization. The numerical results validate the proposed analytical expressions and the rate gains by using the GLP-based uplink codebook design. Finally, the study is extended to the energy efficiency (EE) of the massive MIMO system, as the reduction carbon emissions from the information and communication technology is a long-term target for the researchers. An effective framework of maximizing the EE for the massive MIMO systems is proposed in this thesis. The optimization starts from the maximization of the minimum user rate, which is aiming to increase the quality-of-service and provide a feasible constraint for the EE maximization problem. Secondly, the EE problem is a non-concave problem and can not be solved directly, so the combination of fractional programming and the successive concave approximation based algorithm are proposed to find a good suboptimal solution. It has been shown that the proposed optimization algorithm provides a significant EE improvement compared to a baseline case.
900

Réflexions et contributions méthodologiques à l'ACV de bâtiments neufs : modélisation du contributeur énergie / Considerations and methodological contributions to LCA of new buildings : energy module

Fouquet, Marine 11 December 2015 (has links)
Depuis 1974, date de l'apparition des exigences thermiques sur les bâtiments en France, les réglementations thermiques n’ont cessé d'évoluer pour rendre les bâtiments de plus en plus performants énergétiquement. Aujourd'hui, il apparaît nécessaire d'introduire d'autres indicateurs que la seule consommation d'énergie comme critère de performance d'un bâtiment.L'évaluation environnementale des bâtiments se base sur l'analyse de cycle de vie (ACV). A l'heure actuelle, il existe différents logiciels dédiés à l'ACV bâtiment avec leurs données, leurs méthodologies et leurs indicateurs propres.Par ailleurs, le développement des bâtiments producteurs d'énergie et des systèmes de gestion de la demande électrique soulève de nouvelles problématiques. En effet, l'approche actuelle en ACV tend à utiliser des résultats de simulations thermiques agrégés à l'année alors que pour évaluer les avantages et inconvénients de tels systèmes une granulométrie temporelle plus fine est plus adaptée.Les travaux de cette thèse portent plus particulièrement sur le calcul des impacts environnementaux de la consommation d'énergie en phase d'utilisation et visent à répondre aux problématiques suivantes :Comment, à partir d'un bilan énergétique exhaustif, peut-on récupérer l'information nécessaire à l'évaluation de l'énergie utilisée tout au long du cycle de vie d'un bâtiment ?Par la suite, quelles données environnementales pertinentes peut-on lui affecter ?Comment exprimer et afficher les résultats des impacts liés à cette utilisation d'énergie ?Ainsi, pour les bâtiments producteurs d'énergie, l'échelle de temps à laquelle doit être effectué le bilan énergétique (calcul import/export/autoconsommation) pour évaluer de manière correcte les impacts environnementaux liés à l'usage d'énergie est identifiée. De plus, un bâtiment peut utiliser des énergies renouvelables en profitant de la synergie que peut créer un ensemble de bâtiments, (mutualisation des productions en utilisant les meilleurs emplacements, foisonnement des consommations qui permet une éventuelle meilleure autoconsommation de la production). La manière dont le bilan import/export doit être effectué dans ce cas est déterminée.Les variabilités temporelles et spatiales des mix énergétiques utilisés dans le bâtiment à court et moyen terme sont caractérisées pour mettre en évidence leur influence sur les impacts environnementaux. Puis, l'utilisation de facteurs de caractérisation dynamique sur des cas d'études permet de mieux cerner les potentialités de l'ACV dynamique dans le bâtiment.Enfin, les différences dues aux méthodologies de prise en compte de l'énergie produite localement sur l'expression des résultats d’ACV sont présentées. Par ailleurs, la sensibilité des résultats d'ACV et des valeurs de référence à la variabilité de la donnée environnementale du mix électrique est exposée. / In France, since 1974 when the first thermal regulation on buildings appeared, thermal regulations have never stopped evolving in order to make more and more energy efficient buildings. Today, it is necessary to add new indicators, and not only energy, to describe building performance.Life Cycle Assessment (LCA) is the basis for buildings environmental assessment. Several building LCA software currently exist; they have their own methodologies and indicators.Besides, the development of buildings producing energy and of electrical load management systems raises new questions. Indeed, the current LCA practice use results from dynamic energy simulation at yearly level whereas assessing benefits and drawbacks of such systems has to be done with a smaller time step.This thesis is particularly focused on the calculation of the environmental impacts from energy consumption during the building use phase and aims to answer the following questions:From a complete energy balance, how can we extract information necessary to the assessment of energy consumption during the building life cycle?Then, which environmental data are relevant and should be assigned?How can you express and display impacts linked to energy use?Thus, for buildings producing energy, the time step that should be used for the energy balance (i.e. differentiation between energy consumed on site, exported and imported) in order to assess properly environmental impacts of energy consumption is identified. Moreover, a building can benefit from renewable energy sharing and thus, the way to realize the energy balance for building block is determined.Temporal (short and long term) and spatial variations of energy mixes used in a building are characterized in order to show their influence on the environmental impacts. Then, the use of dynamic characterisation factors on case studies allows to better understand the potentials of dynamic LCA for buildings.Last but not least, the differences between methodologies to handle onsite energy production on the results are presented. Besides, the sensibility of the LCA results and reference values to the variation of the electricity mix environmental data is displayed.

Page generated in 0.0613 seconds