Spelling suggestions: "subject:" fireresistance"" "subject:" cryoresistance""
11 |
The Fire Performance of Timber-Concrete Composite FloorsO'Neill, James William January 2009 (has links)
Timber-concrete composite floors are a combination of timber joists and concrete topping, creating a flooring system to best utilise the advantages each material has to offer. Timber is used as the main tensile load bearing material due to its high strength-to-weight ratio, while concrete is used in floor slabs for its advantages in stiffness and acoustic separation. The strength of the system is dependent on the connection between timber and concrete, thus the connection must be strong, stiff, and economical to manufacture, to ensure that the flooring system is economically viable.
This research investigated the fire performance and failure behaviour of timber-concrete composite floor systems currently under development in New Zealand, resulting in a calculation method for evaluating the fire resistance of these floors. Furnace tests were performed on two full-size floor specimens at the Building Research Association of New Zealand (BRANZ). Both floor specimens were 4 m long and 3 m wide, consisting of 65 mm concrete topping on plywood formwork, connected to double LVL floor joists. They were tested over a 4 m span, subjected to a nominal design live load of 2.5 kPa. Both floors were subjected to the ISO 834 test fire for over 60 minutes. Two separate connection types were tested; concrete notches cut into the timber beams with an incorporated shear key, and metal toothed plates pressed between the double beams.
It was found that the reduction in section size of the timber beams due to the fire governed the failure mode of the floors. Due to the composite action achieved by the connections, the floor units were able to withstand prolonged exposure to the test fire, well exceeding one hour. The test data and visual observations aided in the development of a numerical model for evaluating the fire resistance of the floors. This was developed in a spreadsheet that is able to predict the expected fire resistance of these floors, taking into account some major time dependent variable properties that can have an effect on the overall performance. Load-span tables have been produced to give the estimated fire resistance of floors with differing floor dimensions, span lengths and applied loads.
|
12 |
Understanding, predicting and improving the performance of foam filled sandwich panels in large scale fire resistance testsFoster, Andrew January 2015 (has links)
This thesis presents the results of research on sandwich panel construction, with the aims of developing tools for modelling sandwich panel fire performance and hence to use the tools to aid the development of sandwich panel construction with improved fire resistance. The research focuses on sandwich panels made of thin steel sheeting and a polyisocyanurate (PIR) foam core. For non-loadbearing sandwich panel construction, fire resistance is measured in terms of thermal insulation and integrity only. However, these two parameters are affected by mechanical performance of sandwich panel construction due to the high distortion and large deformation nature of sandwich panel construction under fire attack. Therefore, it is necessary to consider both thermal and mechanical performances of sandwich panels under fire conditions. The work in this thesis includes development of a thermal conductivity model for PIR foam as this thermal property is one of the key values in determining heat transfer through sandwich panels; this thermal conductivity model is based on the effective thermal conductivity of porous foams proposed by Glicksman (1994) and includes the effects of polymer decomposition and increases in foam cell size. It is validated against fire tests carried out on PIR sandwich panels 80mm and 100mm thick with steel facings of thickness 0.5mm. A large 3D sequentially coupled thermal-stress model of a full scale fire test has been developed in the commercial finite element analysis (FEA) software ABAQUS to provide insight into the way sandwich panels behave in a fire resistance test and also to assess different modelling techniques. Aspects and stages of the simulation that agree well with test data are explained. Limitations of the ABAQUS software for simulating sandwich panel fire tests are highlighted; namely, it is not possible to simulate the correct radiation heat transfer through panel joints, as cavity radiation cannot be specified in a fully coupled thermal-stress analysis. Joints are key components of sandwich panel construction. In order to obtain temperature development data for modelling joints, a number of fire tests have been carried out. These fire tests were conducted with different joint configurations and panel thicknesses under realistic fire conditions using timber cribs. The joint fire tests revealed significant ablation of the foam core within the joints of sandwich panels at high temperatures. At the beginning of fire exposure, the joint temperature on the unexposed surface was lower than that on the panel due to the better insulation property of air compared to the foam. However, as the joint gap increased due to ablation of the foam, the joint temperatures became higher than in the panel. A numerical simulation model has been created to investigate this behaviour. Using the aforementioned thermal model, numerical simulations have been carried out to examine the influences of possible changes to sandwich panel design on sandwich panel construction fire performance. It was suggested that if the maximum gap in the joints can be limited to 5mm, for example, by applying intumescent coating strips within the sandwich panel joints to counter the increasing gap formed due to core ablation, then the joint temperature on the unexposed surface would not exceed that of the panel surface, hence the joint would cease to be the weak link. To increase the panel fire resistance, the use of graphite particles in the PIR foam formulation may be considered to lower the contribution of radiative heat transfer within the foam cells by reducing the transmissivity of the cell walls. Graphite particles may offer considerable increases in the thermal resistance of PIR foam at high temperatures by limiting the radiation contribution which dominates heat transfer above 300oC.
|
13 |
An experimental study of relative structural fire behaviour and robustness of different types of steel joint in restrained steel framesWang, Y.C., Dai, Xianghe, Bailey, C.G. 08 March 2011 (has links)
No / This paper describes the experimental results of ten fire tests on medium-scale restrained steel sub-frames to investigate the relative behaviour and robustness of different types of steel joint in steel framed structures in fire. The ten fire tests were designed to investigate the effects of two column sizes (simulating two different levels of axial restraint to the connected beam) and five different types of joint, including fin plate, web cleat, flush endplate, flexible endplate and extended endplate connections. Each test frame, in the form of “rugby goalpost” consisting of one beam and two columns, was connected through two identical beam to column joints. All the steelwork was unprotected except for the top flange of the beam which was protected to simulate the effect of a concrete slab in reducing the beam top flange temperature. The column ends were restrained to examine the effects of axial restraint on the beam and the joints. This paper presents the observations of structural fire behaviour, including joint failure modes and beam limiting temperatures, the development of deflections at beam middle span and axial forces in the joints at elevated temperatures. The main conclusions are: (1) failure (fracture) was observed only in joints when the beam was in catenary action and a variety of joint failure modes were observed which provides valuable data in understanding joint behaviour; (2) the medium-scale steel beams were able to undergo very large deflections View the MathML source without failure; (3) the specimens with stronger connections such as extended endplate reached higher than their limiting temperatures, defined as the beam bottom flange temperature at middle span at which the axial load in the beam returned to zero. But the difference in beam limiting temperatures using different types of joint is small, less than 50 °C; also the column size had little effect (less than 30 °C) on the beam limiting temperature; (4) the beams connected to the larger column experienced less deflections, but higher axial force due to the higher axial restraint to the beam, which led to fracture of the joint components in these tests; in contrast, the lighter columns visibly deformed and formed plastic hinges at the joints, but there was little evidence of connection fracture in the test frames using the light columns; (5) the web cleat connection appears to have the best performance.
|
14 |
Development of robust connection models for steel and composite structures in fireLin, Shuyuan January 2014 (has links)
Structural engineers and architects have a responsibility for incorporating fire safety into their building designs in order to minimize loss of life and property. To meet this requirement, extensive research has been carried out, aimed at obtaining better understanding of the performance of steel and composite structures under fire conditions. Recent research indicates that the robustness of steel connections is vitally important to the fire resistance of steel-framed composite buildings. The development of effective connection models is a key issue in this research field. This PhD research is focused on the development of robust connection elements, for modelling steel connections at elevated temperatures. In this work, a robust simplified two-node connection element has been developed, for modelling the behaviour of the bolted end-plate connections between steel beam and column at elevated temperatures. The proposed numerical procedure is based on the model proposed by Huang (2011), incorporating additional developments to more precisely determine the tension, compression, and bending moment capacities of end-plate connections in fire. The proper failure criteria are proposed to calculate the tension capacity for each individual bolt row. In this new model, the connection failure due to bending, axial tension, compression and shear are considered. The influence of the axial force of the connected beam on the connection is also taken into account. This new model has the advantages of both the simple and component-based models. A total of 22 tests are used to validate the model. From these validations, it is evident that this new connection model has ability to accurately predict the behaviour of the end-plate connection at elevated temperatures, and can be used to represent the end-plate connections in supporting performance-based fire resistance design of steel-framed composite buildings. For modelling the behaviour of partial end-plate connections between steel beams and columns under fire conditions, a simplified robust 2-node connection element has also been developed. The rotational response of a partial end-plate connection at elevated temperatures comprises of two stages. These stages are due to the shift of the compression centre of the connection from the end of end-plate, to the centre of the beam bottom flange at large rotation. The model proposed in this research accounts for these two stage behaviours, representing the partial end-plate iv connection as a 2-node non-linear spring element. Characteristics of the spring, such as stiffness, tension, compression, shear strengths and bending moment resistance, are determined based on a component-based approach. This model therefore retains the advantages of both the simple and component-based models. Compared to normal component-based models, this simplified model has very good numerical stability under static solver condition, and is computationally efficient. Fourteen tests are used to validate the model, showing that the model is capable of accurately predicting the behaviour of partial end-plate connections under fire conditions. A series of numerical studies has been conducted on a 2D steel frame, subjected to ISO834 Fire and Natural Fire, in order to investigate the influences of the connections on the behaviour of steel structures. It is clear that the model can be used to represent the partial end-plate connections in performance-based fire resistance design of steel-framed composite buildings. According to full-scale fire tests, tensile membrane action within the concrete floor slabs plays an important role in affecting the fire resistance of composite buildings. It is well known that the development of tensile membrane actions relies on the vertical support along the edges of the slab panel. However, there is at present a lack of research into how vertical supports influence the tensile membrane actions of the slab. In this thesis, the performance of a generic three dimensional 45m x 45m composite floor subjected to ISO834 Fire and Natural Fire are investigated. Different vertical support conditions and three steel meshes are applied, in order to assess the impact of vertical supports on tensile membrane action of floor slabs. Unlike other existing large scale modelling which assumed that the connections behave as pinned or rigid for simplicity, the two robust 2-node connection element models described above are used to model the semi-rigid behaviour of end-plate and partial end-plate connections within the fire compartment. The impact of connections on the 3D behaviour of composite floors is taken into consideration. The load-transfer mechanisms of a composite floor, when connections fail due to axial tension, vertical shear and bending are investigated. Based on the results obtained, some design recommendations are proposed for enhancing the fire resistance of composite buildings.
|
15 |
The Fire Performance of Post-Tensioned Timber BuildingsCostello, Reuben Shaun January 2013 (has links)
Post-tensioned timber buildings utilise a new construction technique developed largely as part of research undertaken at the University of Canterbury. Timber buildings are constructed using an engineered timber product, such as laminated veneer lumber (LVL), and then stressed with post-tensioned unbonded high-strength steel tendons. The tendons apply a compressive stress to timber members to create a ductile moment resisting connection between adjacent timber members. The major benefit of post-tensioned timber buildings is a significantly improved structural performance.
As timber is a combustible material there is a perceived high fire risk in timber buildings. While timber buildings can be designed to perform very well in fire, a design guide for the fire safety design of post-tensioned timber buildings has not been previously developed. Furthermore, previous research has found that post-tensioned timber box beams may be susceptible to shear failure in fire conditions.
This research investigated the fire performance of post-tensioned timber buildings. A design strategy for the fire performance of post-tensioned timber buildings was developed in conjunction with a simplified calculation method for determining the fire resistance of post-tensioned timber structural members. The fire performance and failure behaviour of post-tensioned timber box beam was also specifically investigated, with special focus given to the shear performance of box beams. A full scale furnace test of a LVL post-tensioned LVL box beam was conducted at the Building Research Association of New Zealand (BRANZ). Four further full scale tests of LVL box beams were conducted at ambient temperature at the University of Canterbury structural laboratory.
Through this research two distinct strategies for the fire design of post-tensioned timber structures were developed. The first strategy is to rely on the residual timber of the members only. The second strategy considers specific fire protection of the post-tensioning system, which can then be used to contribute to the fire resistance of the member. The results of the full scale tests showed good agreement with the proposed the simplified calculation method. It was also determined that shear failure does not need to be specifically considered other than performing strength checks as for other design actions.
|
16 |
Experimental and Numerical Modeling of Heat Transfer in Wall Assemblies2014 April 1900 (has links)
It is critical for the construction industry to ensure that new building designs and materials, including wall and floor assemblies, provide an acceptable level of fire safety. A key fire safety requirement that is specified in building codes is the minimum fire resistance rating. A manufacturer of building materials (e.g., insulation or drywall) is currently required to perform full-scale fire furnace tests in order to determine the fire resistance ratings of assemblies that use their products. Due to the cost of these tests, and the limited number of test facilities, it can be difficult to properly assess the impact of changes to individual components on the overall fire performance of an assembly during the design process. It would be advantageous to be able to use small-scale fire tests for this purpose, as these tests are relatively inexpensive to perform. One challenge in using results of small-scale fire tests to predict full-scale fire performance is the difficulty in truly representing a larger product or assembly using a small-scale test specimen. Another challenge is the lack of established methods of scaling fire test results.
Cone calorimeter tests were used to measure heat transfer through small-scale specimens that are representative of generic wall assemblies for which fire resistance ratings are given in the National Building Code of Canada. Test specimens had a surface area of 111.1 mm (4.375 in.) by 111.1 mm (4.375 in.), and consisted of single or double layers of gypsum board, stone wool insulation and spruce-pine-fir (SPR) studs. As the specimens were designed to represent a one-quarter scale model of a common wall design, with studs spaced at a centre-to-centre distance of 406.4 mm (16 in.), the wood studs were made by cutting nominal 2x4 studs (38 mm by 89 mm) into 9.25 mm by 89 mm (0.375 in. by 3.5 in.) pieces. The scaled studs were then spaced at a centre-to-centre distance of 101.6 mm (4 in.). Three types of gypsum board were tested: 12.7 mm (0.5 in.) regular and lightweight gypsum board, and 15.9 mm (0.625 in.) type X gypsum board. Temperature measurements were made at various points within the specimens during 70 min exposures to an incident heat flux of 35, 50 and 75 kW/m2 using 24 AWG Type K thermocouples and an infrared thermometer. Temperature measurements made during cone calorimeter tests were compared with temperature measurements made during fire resistance tests of the same generic assemblies and the result show a very good agreement for the first 25 min of testing at the unexposed side.
A one-dimensional conduction heat transfer model was developed using the finite difference method in order to predict temperatures within the small-scale wall assemblies during the cone calorimeter tests. Constant and temperature-dependent thermal properties were used in the model, in order to study the effects of changes to materials and thermal properties on fire performance. A comparison of predicted and measured temperatures during the cone calorimeter tests of the generic wall assemblies is presented in this thesis. The model had varying degrees of success in predicting temperature profiles obtained in the cone calorimeter tests. Predicted and measured times for temperatures to reach 100C and 250C on the unexposed side of the gypsum board layer closest to the cone heater were generally within 10%. There was less agreement between predicted and measured times to reach 600C at this location, and the temperature increase on the unexposed side of the test specimen. The model did not do a good job in predicting temperatures in the insulated double layer walls. Sensitivity studies show that the thermal conductivity of the gypsum board has the most significant impact on the predicted temperature.
|
17 |
Avaliação da resistência ao fogo de tubulações de compostos vinílicos empregadas em sistemas prediais de chuveiros automáticos para extinção de incêndio. / Evaluation the fire resistance of the piping manufactured with vinyls compounds used in sprinklers systems.Oliveira, Carlos Roberto Metzker de 10 September 2007 (has links)
Este trabalho estabelece critérios para avaliar a resistência ao fogo de tubulações fabricadas com compostos vinílicos, com diferentes teores de cloro, para os sistemas prediais de chuveiros automáticos, verificando o relacionamento entre os resultados obtidos nos ensaios realizados em trechos de tubulações pressurizados e submetidos a uma elevação de temperatura e os resultados observados nos ensaios realizados em tubulações em escala real exposta diretamente às chamas, simulando uma situação de incêndio. Assim, nos ensaios em trechos de tubulações ocorreu um aumento da resistência ao fogo proporcional ao aumento do teor de cloro dos compostos; nos ensaios em tubulações em escala real observou-se que corpos-deprova com tubos vinílicos grau a partir de 64 (grau este relacionado ao teor de cloro) suportam as condições de exposição ao fogo; a relação entre os ensaios mostrou que tubulações fabricadas com um composto vinílico com resistência a partir de 110 segundos de exposição ao fogo, no ensaio em trechos de tubulações, suportam também as condições estabelecidas no ensaio em escala real. Isto indicou a possibilidade de se utilizar o ensaio em trechos de tubulações para avaliar, preliminarmente, a capacidade dos materiais em resistir ao fogo, antes de serem submetidos ao ensaio em escala real, pois este apresenta maiores custos envolvidos e maiores dificuldades na sua execução. / This work establishes standards to evaluate the fire resistance of the piping manufactured with vinyl compounds, with different chlorine contents, for buildings sprinklers systems, verifying the relation amongst the results obtained with pressured small sections of piping and submitted to a temperature rise, and the results obtained from the real scale tests, simulating a fire situation with the samples in real scale were exposed to the flames. Therefore, in the small sections of piping tests an increase of the fire resistance proportional to the chlorine content of the compositions increases occurred; in the real scale tests observed that the piping with degree starting from 64 (degree related with to the chlorine contents) per cent supports the exposition to the flames; the relation between the tests showed that piping manufactured with vinyl compounds with fire resistance starting from 110 seconds of the small sections of piping tests, also supports the established conditions in the real scale tests. It was shown the possibility to employ the reduced scale test to evaluate, previously, the fire resistance of the materials previous to the real scale tests, which is more expensive and shows bigger difficulties to be done.
|
18 |
Performance Based Design of Structural Steel for Fire ConditionsParkinson, David L 21 August 2002 (has links)
"As jurisdictions throughout the world progress toward performance based building codes, it is important that the proper tools be made available to the engineering profession in order that they may take full advantage of these new codes. There is currently a large body of work written on the subject of performance based or engineered structural fire safety. Unfortunately, most of this information is scattered throughout technical journals from different countries and organizations, and not easily accessible to the practicing engineer. Under the current prescriptive code regime there is generally no requirement to undertake an engineering approach to structural fire safety, since the required fire resistance ratings are prescribed and the fire resistance ratings of materials/assemblies are determined through standard tests. However, these methods have been shown to be both unnecessary and expensive in some cases. A method will be developed that can be used to determine required fire resistance ratings for fire exposed structural steel based on a realistic engineering approach. A procedure is summarized for calculating time-temperature curves from a real fire in a typical compartment. With this time-temperature relationship a realistic time to failure for structural steel members can be determined. The method is summarized. Comments regarding important considerations and a worked example are provided to demonstrate the utility of the method."
|
19 |
Whole range behaviour of restrained reinforced concrete beams and frames in fireAlbrifkani, Sherwan January 2017 (has links)
This thesis presents the results of a numerical investigation of the whole range, large deflection behaviour of axially and rotationally restrained RC beams and interactions between beams and columns in RC frame structures exposed to fire. The dynamic explicit time integration algorithm implemented in the general finite element package ABAQUS/Explicit solver was used so as to overcome various modelling challenges including temporary instability, local failure of materials, non-convergence and long simulation time. Either load factoring or mass scaling may be used to speed up the simulation process. Validity of the proposed simulation model was checked by comparison of simulation results against relevant test results of restrained RC beams at ambient temperature and in fire. The validated ABAQUS/Explicit model was then used to conduct a comprehensive study of the effects of different levels of axial and rotational restraints on the whole range behaviour of RC beams in fire, including combined bending and compression due to restrained thermal expansion, bending failure, transition from compression to tension when catenary action develops and complete fracture of reinforcement at ultimate failure. The numerical results show that different bending failure modes (middle span sagging failure, end hogging failure due to fracture of tensile reinforcement, end hogging failure due to concrete crushing) can occur under different levels of boundary restraints. Furthermore, release of a large amount of energy during the rapid transition phase from compression to tension in a beam prevents formation of a three hinge mechanism in the beam under bending. The numerical results have also revealed that reliable catenary action develops at large deflections following bending failure only if bending failure is governed by compressive failure of concrete at the end supports whereby a continuous tension path in the beam can develop in the top reinforcement. To allow fire engineering practice to take into consideration the complex restrained RC beam behaviour in fire, a simplified calculation method has been developed and validated against the numerical simulation results. The proposed method is based on sectional analysis and meets the requirements of strain compatibility and force equilibrium. The validation study results have shown that the simplified method can satisfactorily predict the various key quantities of restrained beam axial force and beam deflection-fire exposure time relationships, with the simplified method generally giving results on the safe side. The validated explicit finite element model in ABAQUS was also used to investigate structural interactions between beams and columns within an RC frame structure with different fire exposure scenarios. When fire exposure involves beams and columns located in edge bays of a frame, catenary action cannot develop. Also due to thermal expansion of the connected beam, additional bending moments can generate in the columns. Furthermore, very large hogging moments can be induced at the beam end connected to the internal bay. It is necessary to include these bending moments when designing beams and columns under such fire conditions. Catenary action can develop in interior beams of the frame when fire exposure is in interior bays where the beams have high degrees of axial restraint.
|
20 |
Fire Resistance in Cross-laminated Timber : Brandmotstånd hos korslaminerat massiv träWilinder, Per January 2010 (has links)
This report deals with the fire resistance of cross-laminated timber (CLT). Themain purpose is to verify a new model on CLT and its ability to sustain itsbearing capacity when exposed to fire. To establish this, a series of bendingtestshas been conducted in combination with fire exposure of the CLT. Twodifferent series, with different dimensions, of beams were tested (series 1 andseries 2). Four basic set-ups: CLT in tension or compression, either equippedwith fire protective covering or not. Results from the tests has been gatheredand evaluated to verify the theoretical model of the fire resistance. Evaluationwas made through analysis of the residual cross-sections of the beamsregarding charring depth and rate and moment of inertia (I).Results of the tests verify to a large extent the Design model. Externalproblems and variations in the beams themselves caused some deviations.Analysis confirmed the CLT as being more similar to other laminated productssuch as Laminated Veneer Lumber (LVL) then homogenous solid beams. BothCLT and LVL experience delamination when exposed to fire resulting in anincreased charring rate. The difference in rate when using Gypsum plaster as aprotective barrier against the fire exposure is also equal to LVL.The results of the report will be used in the new version of the EuropeanStandard, Euro Code 5 and in the third edition of Fire Safe Timber Buildings.Charring rates proved to be less than expected but the CLTs ability to withstandfire while keeping its bearing capacity
|
Page generated in 0.0962 seconds