• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Support for C++ in GMC / Support for C++ in GMC

Šebetovský, Jan January 2013 (has links)
Software is used in more and more aspects of our lives, so its correctness is more and more important. Its verification is thus a good idea. Now there are not many tools for verification of programs in the C++ language and most of them cannot verify all required properties. Because of this we decided to extend GMC, which was already able to verify C code, with support of the C++ language. However the C++ language is very vast, so the goal of this work is implementation of only the basic language features (inheritance, constructors, destructors, virtual methods and exceptions). The support of all those features have been implemented except for exceptions, which are implemented only partially. Powered by TCPDF (www.tcpdf.org)
2

Molecular Cloud Fragmentation and Massive Star Formation in the GMC G345.5+1.0

López Calderón, Cristian Marcelo January 2011 (has links)
No description available.
3

Generic Model Control (GMC) in Multistage Flash (MSF) Desalination

Alsadaie, S.M., Mujtaba, Iqbal M. 02 June 2016 (has links)
Yes / Multistage Flash Desalination (MSF) is currently facing an enormous challenge in cutting of the cost: within the last few years, the MSF experienced a gradual decline in investment compared to other techniques of desalting water and thus, a significant improvement is required to remain attractive for capital investors. Improved process control is a cost effective approach to energy conservation and increased process profitability. In this work, a dynamic model is presented using gPROMS model builder to optimize and control MSF process. The Proportional Integral Derivative Controller (PID) and Generic Model Control (GMC) are used successfully to control the Top Brine Temperature (TBT) and the Brine Level (BL) in the last stage at different times of the year. The objectives of this study are: firstly, to obtain optimum TBT and BL profiles for four different seasons throughout the year by minimizing the Total Seasonal Operating Cost (TSOC); secondly, to track the optimum TBT and BL profiles using PID and GMC controllers with and without the presence of constraints; thirdly, to examine how both types of controllers handle the disturbances which occur in the plant. The results are promising and show that GMC controller provides better performance over conventional PID controller to handle a nonlinear system.
4

High Performance Integrated Circuit Blocks for High-IF Wideband Receivers

Silva Rivas, Jose F. 2009 May 1900 (has links)
Due to the demand for high‐performance radio frequency (RF) integrated circuit design in the past years, a system‐on‐chip (SoC) that enables integration of analog and digital parts on the same die has become the trend of the microelectronics industry. As a result, a major requirement of the next generation of wireless devices is to support multiple standards in the same chip‐set. This would enable a single device to support multiple peripheral applications and services. Based on the aforementioned, the traditional superheterodyne front‐end architecture is not suitable for such applications as it would require a complete receiver for each standard to be supported. A more attractive alternative is the highintermediate frequency (IF) radio architecture. In this case the signal is digitalized at an intermediate frequency such as 200MHz. As a consequence, the baseband operations, such as down‐conversion and channel filtering, become more power and area efficient in the digital domain. Such architecture releases the specifications for most of the front‐end building blocks, but the linearity and dynamic range of the ADC become the bottlenecks in this system. The requirements of large bandwidth, high frequency and enough resolution make such ADC very difficult to realize. Many ADC architectures were analyzed and Continuous‐Time Bandpass Sigma‐Delta (CT‐BP‐ΣΔ) architecture was found to be the most suitable solution in the high‐IF receiver architecture since they combine oversampling and noise shaping to get fairly high resolution in a limited bandwidth. A major issue in continuous‐time networks is the lack of accuracy due to powervoltage‐ temperature (PVT) tolerances that lead to over 20% pole variations compared to their discrete‐time counterparts. An optimally tuned BP ΣΔ ADC requires correcting for center frequency deviations, excess loop delay, and DAC coefficients. Due to these undesirable effects, a calibration algorithm is necessary to compensate for these variations in order to achieve high SNR requirements as technology shrinks. In this work, a novel linearization technique for a Wideband Low‐Noise Amplifier (LNA) targeted for a frequency range of 3‐7GHz is presented. Post‐layout simulations show NF of 6.3dB, peak S21 of 6.1dB, and peak IIP3 of 21.3dBm, respectively. The power consumption of the LNA is 5.8mA from 2V. Secondly, the design of a CMOS 6th order CT BP‐ΣΔ modulator running at 800 MHz for High‐IF conversion of 10MHz bandwidth signals at 200 MHz is presented. A novel transconductance amplifier has been developed to achieve high linearity and high dynamic range at high frequencies. A 2‐bit quantizer with offset cancellation is alsopresented. The sixth‐order modulator is implemented using 0.18 um TSMC standard analog CMOS technology. Post‐layout simulations in cadence demonstrate that the modulator achieves a SNDR of 78 dB (~13 bit) performance over a 14MHz bandwidth. The modulator’s static power consumption is 107mW from a supply power of ± 0.9V. Finally, a calibration technique for the optimization of the Noise Transfer Function CT BP ΣΔ modulators is presented. The proposed technique employs two test tones applied at the input of the quantizer to evaluate the noise transfer function of the ADC, using the capabilities of the Digital Signal Processing (DSP) platform usually available in mixed‐mode systems. Once the ADC output bit stream is captured, necessary information to generate the control signals to tune the ADC parameters for best Signal‐to‐Quantization Noise Ratio (SQNR) performance is extracted via Least‐ Mean Squared (LMS) software‐based algorithm. Since the two tones are located outside the band of interest, the proposed global calibration approach can be used online with no significant effect on the in‐band content.
5

Selecting the best control methodology to improve the efficiency of discontinuous reactors

Pahija, E., Manenti, F., Mujtaba, Iqbal M. January 2013 (has links)
No / This work investigates in detail several methodologies to improve the optimal control of discontinuous processes. It shows that whenever a batch dynamic optimization is solved, the optimum is related to the control methodology adopted and the result is a sub-optimum since other more (or apparently less!) appealing control methodologies might lead to "better" optimal solutions. The selection of the best control methodology for the dynamic optimization is broached for batch reactors using gPROMS models builder 3.5.2 for dynamic modeling and BzzMath 6.0 optimizers to handle control and optimization issues.
6

Design and operation of multistage flash (MSF) desalination : advanced control strategies and impact of fouling : design operation and control of multistage flash desalination processes : dynamic modelling of fouling, effect of non-condensable gases on venting system design and implementation of GMC and fuzzy control

Alsadaie, Salih M. M. January 2017 (has links)
The rapid increase in the demand on fresh water due the increase in the world population and scarcity of natural water puts more stress on the desalination industrial sector to install more desalination plants around the world. Among these desalination plants, multistage flash desalination process (MSF) is considered to be the most reliable technique of producing potable water from saline water. In recent years, however, the MSF process is confronting many problems to cut off the cost and increase its performance. Among these problems are the non-condensable gases (NCGs) and the accumulation of fouling which they work as heat insulation materials. As a result, the MSF pumps and the heat transfer equipment are overdesigned and consequently increase the capital cost and decrease the performance of the plants. Moreover, improved process control is a cost effective approach to energy conservation and increased process profitability. Thus, this study is motivated by the real absence of detailed kinetic fouling model and implementation of advance process control (APC). To accomplish the above tasks, commercial modelling tools can be utilized to model and simulate MSF process taking into account the NCGs and fouling effect, and optimum control strategy. In this research, gPROMS (general PROcess Modeling System) model builder has been used to develop the MSF process model. First, a dynamic mathematical model of MSF is developed based on the basic laws of mass balance, energy balance and heat transfer. Physical and thermodynamic properties of brine, distillate and water vapour are included to support the model. The model simulation results are validated against actual plant data published in the literature and good agreement with these data is obtained. Second, the design of venting system in MSF plant and the effect of NCGs on the overall heat transfer coefficient (OHTC) are studied. The release rate of NCGs is studied using Henry’s law and the locations of venting points are optimised. The results reveal that high concentration of NCGs heavily affects the OHTC. Furthermore, advance control strategy namely: generic model control (GMC) is designed and introduced to the MSF process to control and track the set points of the two most important variables in the MSF plant; namely the Top Brine Temperature (TBT) which is the output temperature of the brine heater and the Brine Level (BL) in the last stage. The results are compared to conventional Proportional Integral Derivative Controller (PID) and show that GMC controller provides better performance over conventional PID controller to handle a nonlinear system. In addition, a new control strategy called hybrid Fuzzy-GMC is developed and implemented to control the same aforementioned loops. Its results reveal that the new control outperforms the pure GMC in some areas. Finally, a dynamic fouling model is developed and incorporated into the MSF dynamic process model to predict fouling at high temperature and high velocity. The proposed dynamic model considers the attachment and removal mechanisms of calcium carbonate and magnesium hydroxide with more relaxation of the assumptions. Since the MSF plant stages work as a series of heat exchangers, there is a continuous change of temperature, heat flux and salinity of the seawater. The proposed model predicts the behaviour of fouling based on the physical and thermal conditions of every single stage of the plant.
7

Design and Operation of Multistage Flash (MSF) Desalination: Advanced Control Strategies and Impact of Fouling. Design operation and control of multistage flash desalination processes: dynamic modelling of fouling, effect of non-condensable gases on venting system design and implementation of GMC and fuzzy control

Alsadaie, Salih M.M. January 2017 (has links)
The rapid increase in the demand on fresh water due the increase in the world population and scarcity of natural water puts more stress on the desalination industrial sector to install more desalination plants around the world. Among these desalination plants, multistage flash desalination process (MSF) is considered to be the most reliable technique of producing potable water from saline water. In recent years, however, the MSF process is confronting many problems to cut off the cost and increase its performance. Among these problems are the non-condensable gases (NCGs) and the accumulation of fouling which they work as heat insulation materials. As a result, the MSF pumps and the heat transfer equipment are overdesigned and consequently increase the capital cost and decrease the performance of the plants. Moreover, improved process control is a cost effective approach to energy conservation and increased process profitability. Thus, this study is motivated by the real absence of detailed kinetic fouling model and implementation of advance process control (APC). To accomplish the above tasks, commercial modelling tools can be utilized to model and simulate MSF process taking into account the NCGs and fouling effect, and optimum control strategy. In this research, gPROMS (general PROcess Modeling System) model builder has been used to develop the MSF process model. First, a dynamic mathematical model of MSF is developed based on the basic laws of mass balance, energy balance and heat transfer. Physical and thermodynamic properties of brine, distillate and water vapour are included to support the model. The model simulation results are validated against actual plant data published in the literature and good agreement with these data is obtained. Second, the design of venting system in MSF plant and the effect of NCGs on the overall heat transfer coefficient (OHTC) are studied. The release rate of NCGs is studied using Henry’s law and the locations of venting points are optimised. The results reveal that high concentration of NCGs heavily affects the OHTC. Furthermore, advance control strategy namely: generic model control (GMC) is designed and introduced to the MSF process to control and track the set points of the two most important variables in the MSF plant; namely the Top Brine Temperature (TBT) which is the output temperature of the brine heater and the Brine Level (BL) in the last stage. The results are compared to conventional Proportional Integral Derivative Controller (PID) and show that GMC controller provides better performance over conventional PID controller to handle a nonlinear system. In addition, a new control strategy called hybrid Fuzzy-GMC is developed and implemented to control the same aforementioned loops. Its results reveal that the new control outperforms the pure GMC in some areas. Finally, a dynamic fouling model is developed and incorporated into the MSF dynamic process model to predict fouling at high temperature and high velocity. The proposed dynamic model considers the attachment and removal mechanisms of calcium carbonate and magnesium hydroxide with more relaxation of the assumptions. Since the MSF plant stages work as a series of heat exchangers, there is a continuous change of temperature, heat flux and salinity of the seawater. The proposed model predicts the behaviour of fouling based on the physical and thermal conditions of every single stage of the plant.
8

Utveckling av användarmanual - Aircraft Performance Manual

Nhan, Christine, Andersson, Marcus January 2013 (has links)
Navtech är en internationell leverantör av flygoperationella produkter. Det här examensarbetet utfördes på en av deras produktionsavdelning som kallas Aircraft Performance, i Stockholm. Arbetet består av framtagning av en manual till en mjukvaruprodukt. Produkten är ett program som beräknar och presenterar flygprestandainformation för start och landning. Programmet tillhandahålls med två användarmanualer, Userguide och Prepages. Dessa manualer beskriver hur programmet fungerar och hur det presenterade flygprestandainformation skall användas. Företaget har funnit ett behov av att förbättra innehållet av dessa två manualerna och vill ha hjälp med att skapa en ny, enhetlig och lättanvänd manual. För det har upptäckts att manualerna som tillhandahålls till kunderna inte alltid innehåller all grundläggande information om programmet och lett till att kunderna behöver kontakta Aircraft Performance kundsupport för hjälp och vägledning. Förutom att den nya manualen skulle vara enhetlig ville företaget att innehållet skulle vara generellt och fungera som en grundmall. Detta för att den sedan kunna anpassas efter varje nytt specifikt program. Den nya framtagna manualen har fått namnet Aircraft Performance Manual. För att informationen skall vara konsekvent i hela Aircraft Performance Manual för ett specifikt program har riktlinjer, kallad Developer guidelines, tagits fram under examensarbetet. De beskriver steg för steg vilken information som behöver anpassas för programmet. Denna rapport är en studie av programmets funktionaliteter och manualernas innebörd (Userguide och Prepages) samt Navtechs interna dokumenter som också är relaterad till programmet. Rapporten presenterar resultatet av det första upplägget av Aircraft Performance Manual, som är godkänd av Geneth Daley, Product Manager på Aircraft Performance avdelningen. I och med att Aircraft Performance Manual har blivit ett mycket stort dokument har vissa delar i denna lämnats med förslag till vidare utveckling och bearbetning. Detta är presenterad i slutet av rapporten. / Navtech is an international supplier of flight operational products. This thesis is performed in one of their production department called Aircraft Performance, in Stockholm. The work consists of development of a manual to a software product. The software calculates and presents aircraft performance information for takeoff and landing. The software is provided with two user manuals called Userguide and Prepages. These manuals supply information of how the software works and how to apply the flight performance information. The company has found needs of improving the contents in these manuals and needs help to develop a new and uniform manual that is easy-to-use. It has been discovered that the manuals which have been provided to customers does not always consist of all fundamental information about the software. The consequence of this has led customers to contact Aircraft Performance customer service for help and guidance. In addition to have a uniform manual, the company wants it to be generic and be used as a basic template. The reason is to be able to customize it for every new specific software. The newly developed manual is called Aircraft Performance Manual. To be able to maintain consistent information in the Aircraft Performance Manual for specific software a guideline, called Developer guidelines, has been created during the thesis work. It describes step by step which information needs to be customized for the software. This report consist study of the software functionality, the purpose of the manuals (Userguide and Prepages) and Navtechs internal documentations which also contains information related to the software. The report presents the first edition of the Aircraft Performance Manual, which is approved by Geneth Daley, the Product Manager of Aircraft Performance department. Because Aircraft Performance Manual has become a huge document, some parts have been left out with suggestions for further development och processing. They are presented in the end of this report.
9

ヒト糸球体メサンギウム細胞特異的遺伝子のクロ-ニング

宮田, 敏男 03 1900 (has links)
科学研究費補助金 研究種目:一般研究(B)(2) 課題番号:07457240 研究代表者:宮田 敏男 研究期間:1995-1996年度

Page generated in 0.0242 seconds