• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 30
  • 30
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of Sedimentation Characteristics of Dredge Sediment Used in Coastal Restoration and Marsh Creation Projects

Mebust, Christine M 15 May 2015 (has links)
There is a demand to reestablish a healthy coastal ecosystem by rebuilding wetlands with river diversion or dredged sediments in coastal Louisiana. Land building projects using dredged sediments from adjacent canals and river beds, can be used to protect the coastal properties and infrastructure systems from flood and storm surges. To predict the sediment’s long term behavior, math models require input parameters based on sediment engineering properties and material characteristics. Proper characterization is critical for accurate design of coastal restoration projects. The dredge material sedimentation characteristics and their effects on the settlement rate of suspended solid particles and underlying foundation soil depend, among other factors, on the grain size distribution of the dredged material, salinity of the composite slurry, and slurry solid particles concentration. This research evaluated the effects of grain size distribution, salinity, and initial solids concentration on the sedimentation characteristics of fine grained dredged sediments in Coastal Louisiana.
12

Sedimentation of suspensions exhibiting various regimes of settlement

Di Giovanni, Bruno Amedeo January 2013 (has links)
This work reports an investigation of colloidal suspensions during sedimentation in what is known as the intermediate concentration range; one notoriously difficult to study. Two materials were examined: titanium dioxide P25 nanoparticles and magnesium hydroxide. The characterisation of these materials highlighted their high tendency to form aggregates under certain conditions. By the use of laser diffraction, measurements of the cluster size were conducted at under various conditions of shear. The use of sonication energy suggested the identification and classification of two classes of clusters related to their strength: high strength , and low strength clusters. A mathematical model which considered cluster formation and the occurrence of breakage predicted the aggregation and disaggregation kinetics. The approach was based on cluster-cluster interactions rather than particle-particle interactions. The results obtained by particle size analysis were compared with the size obtained using permeability analysis and settling velocity. In both cases the calculated sizes were comparable with the data obtained from size analysis; however, for magnesium hydroxide the predicted cluster size was a little higher and this may be due to the formation of channels giving faster settling. For the titanium dioxide it was noticeable that different mixing strategies exhibited different cluster size, network formation and settling behaviour. Finally, a novel modelling approach based on the presence of clusters rather than particles is presented. It is a combined model which considers the settling curve divided into two zones: a zone below the gel point modelled by a Kynch type approach and a zone above the gel point modelled by consolidation theory. This combined approach was only applicable to the settling data of titanium dioxide, where the settling data encompassed the gel point and the gel point could be identified by consideration of the Richardson and Zaki plots. For magnesium hydroxide, only the consolidation model was needed as all the initial settling concentrations were above the gel point.
13

The Effect of Coarse Gravel on Cohesive Sediment Entrapment in an Annular Flume

Glasbergen, Kenneth January 2014 (has links)
The amount and type of cohesive sediment found in gravel river beds can have important implications for the health of aquatic biota, surface/groundwater interactions and water quality. Due to landscape disturbances in the Elbow River watershed, increased sediment fluxes have negatively impacted fish habitat, water quality and water supply to the City of Calgary. However, little is known about the source of cohesive sediment and its interaction with gravel deposits in the Elbow River. This research was designed to: 1) quantify the transport properties (critical shear stress for erosion, deposition, porosity, settling velocity, density) of cohesive sediment and 2) evaluate the potential for coarse gravel to entrap cohesive sediment in the Elbow River. A 5m annular flume was used to conduct erosion and deposition experiments using plane and coarse bed conditions. The critical shear stress for deposition and erosion of the Elbow River cohesive sediments was 0.115Pa and 0.212Pa, respectively. The settling velocity of the cohesive sediment had an inverse relationship between floc size and settling velocity for larger flocs, due to a decrease in floc density with increased size. Cohesive sediment moved from the water column into the gravel bed via the coupling of surface and pore water flow. Once in the gravel bed, cohesive sediments were not mobilized from the bed because the shear produced by the flume was less than the critical shear to mobilize the gravel bed. Using a model developed by Krishnappan and Engel (2006), an entrapment coefficient of 0.2 was determined for the gravel bed. Entrapment coefficients were plotted against substrate size, porosity and hydraulic conductivity, demonstrating a relationship between entrapment coefficient and these variables. It was estimated that 864kg of cohesive sediment is stored in the upper 0.08m of a partially submerged point bar in the Elbow River. Accordingly, when flow conditions are sufficient to mobilize the gravel bed and disturb the amour layer, cohesive materials may be entrained and transported into the Glenmore Reservoir, where it will reduce reservoir capacity and may pose treatment challenges to the drinking water supply.
14

Modelling Chemically Enhanced Primary Settlers Treating Wastewater using Particle Settling Velocity Distribution : Modellering av kemfällning i försedimentering för avloppsvatten, genom att använda distribuering av sedimentationshastigheter för suspenderadepartiklar.

Lundin, Emma January 2014 (has links)
The urban sprawl creates a gap between producers and consumers and the a sustainable circuitof nutrients and energy is difficult to maintain. Many times the waste that is created in urbanareas is not reused and the circuit is lost. In this project, wastewater treatment is looked atwith the view point that resource recovery is possible through energy production and reuse ofnutrients. In order to optimally run each process step at a wastewater treatment plant forimproved resource recovery, more knowledge is needed in order to not disregard the finaleffluent quality. The goal of this project was to develop a model in MATLAB/Simulink for achemically enhanced primary clarifier at a wastewater treatment plant. The potential ofproducing more biogas and reducing the aeration energy needed in the biological treatmentstep was looked at by focusing on describing the settling velocity of suspended solids.Experimental analysis on settling properties for solids was performed on sampled wastewaterentering the primary settler after changing the addition of chemicals prior in the process line.The wastewater samples were homogenized and then rapidly vacuum pumped up in a column.The solids in the column could thereafter settle and was retained in a cup at the bottom. Themass of total suspended solids (TSS) was classified in five different settling velocity classes,each class assigned a characteristic settling velocity. The experimental procedure followed theViCA's protocol (French acronym for Settling Velocity for Wastewater). A settler, much likethe secondary settler in the Benchmark Simulation Model No. 2 (BSM2), a 10 layer nonreactivetank was modeled. The mass balance in each layer of the settler was decided by thevertical solid flux in the tank and built on the characteristic settling velocity gained from theexperiments. Re-circulation of excess sludge from the subsequent steps at the plant showed toeffect the settling properties of the sludge in the primary settler. The components of TSSshowed to have the largest effect on the distribution of settling velocity. The variation in doseof both coagulant and cationic polymer prior the primary settling tank showed to effect theparticle settling distribution somewhat. A first simulation with an applicable dynamic influentscenario was run. Despite any proper calibration the model gave fairly good predictions ofmeasured TSS in the effluent and sludge outtake water. / När urbana områden växer uppstår svårigheter i att bibehålla ett hållbart kretslopp av energioch näringsämnen. Avståndet mellan producent och konsument ökar och många gångeråteranvänds inte det avfall som städerna producerar och det hållbara kretsloppet bryts. Dettaprojekt har fokuserat på resursåteranvändningen i avloppsvattenhanteringen genommöjligheterna som finns i energiproduktion i form av biogas samt återanvändning avnäringsämnen genom slamåterförsel. Mer kunskap behövs inom varje processteg för attoptimalt använda avloppsreningsverk för förbättrad resurs-återvinning så att inte utgåendevattenkvalitet blir lidande. Målet med projektet var att utveckla en modell iMATLAB/Simulink för primärsedimentering med kemisk fällning. Experimentelltanalyserades sedimentationsegenskaperna hos primärslam genom provtagning avavloppsvatten inkommande till försedimenteringen efter tillsatser av fällnings-kemikalier.Proverna homogeniserades och vakuumpumpades sedan snabbt upp i en kolonn. Detpartikulära materialet i kolonnen kunde därefter sedimentera och fångades upp i en kopp ibotten. Den sedimenterade massan av totalt suspenderat material (TSS) klassificerades i femolika sedimenteringshastighetsklasser och varje klass tilldelades en karakteristisksedimentationshastighet Det experimentella förfarandet följde ViCA’s protokoll (franskförkortning för sedimentationshastigheter för avloppsvatten). En modell av ensedimentationstank, ungefär som för sekundär-sedimenteringen i Benchmark SimulationModel No. 2 (BSM2), utvecklades som en 10 lager icke reaktiv tank. Massbalansen i varjelager bestämdes av det vertikala flödet av partiklar och beräknades med de experimentelltframtagna karakteristiska sedimentationshastigheterna. Återcirkulering av överskottsslam frånde efterföljande reningsstegen visade sig ha stor påverkan på slammetssedimentationsegenskaper i försedimenteringen. Typen av TSS-komponenter hade den störstainverkan på fördelningen av sedimentationshastigheter. Variationen i dos av bådefällningskemikalie och katjonspolymer före primär-sedimenteringstanken hade en visspåverkan på fördelningen. En första simulering med ett sannolikt dynamisk inflödesscenariokördes. Utan någon riktig kalibrering av modellen gav den ändå en relativt realistisk prognospå TSS i utgående vatten och i slamuttaget. / I samarbete med forskningsgruppen ModelEAU, Quebec, Kanada
15

MBBR Produced Solids: Particle Characteristics, Settling Behaviour and Investigation of Influencing Factors

Arabgol, Raheleh 23 March 2021 (has links)
The separation of solids from biological wastewater treatment is an important step in the treatment process, as it has a significant impact on effluent water quality. The moving bed biofilm reactor (MBBR) technology is a proven upgrade or replacement wastewater treatment system for carbon and nitrogen removal. However, a challenge of this technology is the characteristics of the effluent solids that results in their poor settlement; with settling being the common method of solids removal. The main objective of this research is to understand and expand the current knowledge on the settling characteristics of MBBR produced solids and the parameters that influence them. In particular, in this dissertation, the impacts are studied of carrier types, biofilm thickness restraint design of carriers, and varying carbonaceous loading rates on MBBR performance, biofilm morphology, biofilm thickness, biofilm mass, biofilm density, biofilm detachment rate, solids production, particle size distribution (PSD) and particle settling velocity distribution (PSVD). With this aim, three MBBR reactors housing three different carrier types were operated with varying loading rates. In order to investigate the effect of carrier geometrical properties on the MBBR system, the conventional, cylindrically-shaped, flat AnoxK™ K5 carrier with protected voids was compared to two newly-designed, saddle-shaped Z-carriers with the fully exposed surface area. Moreover, the AnoxK™ Z-200 carrier was compared to the AnoxK™ Z-400 carrier to evaluate the biofilm thickness restraint design of these carriers, where the Z-200 carrier is designed for greater biofilm thickness-restraint. The Z-200 carrier is designed to limit the biofilm thickness to the level of 200 µm as opposed to 400 µm for the Z-400 carrier. Finally, to investigate the effects of varying carbonaceous loading rates on system removal performance, biofilm characteristics and solids characteristics, further analyses were performed at three different loading rates of 1.5 to 2.5 and 6.0 g-sBOD/m2·d in steady-state conditions. The PSD and the PSVD analyses were combined to relate these two properties. A settling velocity distribution analytical method, the ViCAs, was applied in combination with microscopy imaging and micro-flow imaging to investigate the relation of PSD and settling behaviour of MBBR produced particles. The obtained results have indicated that the carrier type significantly impacted the MBBR performance, biofilm, and particle characteristics. As such, the K5 carrier MBBR system demonstrated a statistically significantly higher carbonaceous removal rate and efficiency (3.8 ± 0.3 g-sBOD/m2·d and 59.9 ± 3.0% sBOD removal), higher biofilm thickness (281.1 ± 8.7 μm), higher biofilm mass per carrier (43.9 ± 1.0 mg), lower biofilm density (65.0 ± 1.5 kg/m3), lower biofilm detachment rate (1.7 ± 0.7 g-TSS/ m2·d) and hence lower solids production (0.7 ± 0.3 g-TSS/d) compared to the two Z-carriers. The Z-carriers' different shape exposes the biofilm to additional shear stress, which could explain why the Z-carriers have thinner and denser biofilm, resulting in higher solids production and lower system performance in comparison with K5. Moreover, the carrier type was also observed to impact the particle characteristics significantly. PSD analysis demonstrated a higher percentage of small particles in the Z-carrier system effluent and hence a significantly lower solids settling efficiency. Therefore, the solids produced in the K5 reactor have shown enhanced settling behaviour, consisting of larger particles with faster settling velocities compared to Z-carriers. This dissertation also investigated the effects of restraint biofilm thickness on MBBR performance by comparing the Z-200 biofilm thickness-restraint carrier to the Z-400 carrier. No significant difference was observed in removal efficiency, biofilm morphology, biofilm density, biofilm detachment rate, and solids production between the Z-200 to the Z-400 carriers. The PSD and the PSVD analyses did not illustrate any significant difference in the particles’ settling behaviour for these two biofilm thickness restraint carriers, indicating that the biofilm thickness-restraint carrier design was not a controlling factor in the settling potential of MBBR produced solids. Finally, this research studied the effect of varying loading rates and demonstrated a positive, strong linear correlation between the measured sBOD loading rate and the removal rate, indicating first-order BOD removal kinetics. The biofilm thickness, biofilm density and biofilm mass decreased when the surface area loading rate (SALR) was increased from 2.5 to 6.0 g-sBOD/m2·d. The solids retention time (SRT) was also shown to decrease by increasing the SALR, where the lowest SRT (1.7 ± 0.1 days) was observed at the highest SALR, with the highest cell viability (81.8 ± 1.7%). Significantly higher biofilm detachment rate and yield were observed at SALR 2.5, with the thickest biofilm and a higher percentage of dead cells. Consequently, a higher fraction of larger and rapidly settling particles was observed at SALR of 2.5 g-sBOD/m2·d, which leads to a significantly better settling behaviour of the MBBR effluent solids. This study expands the current knowledge of MBBR-produced particle characteristics and settling behaviour. A comprehensive understanding of the MBBR system performance and the potential influencing factors on the MBBR produced solids, particle characteristics, and their settleability will lead to optimized MBBR design for future pilot- and full-scale applications of the MBBR.
16

Analytical models of mean secondary velocities and stream functions under different bed-roughness configurations in wide open-channel turbulent flows

Kundu, S., Chattopadhyay, T., Pu, Jaan H. 11 February 2022 (has links)
Yes / Turbulence-induced secondary currents are commonly present in straight natural as well as artificial open channels without bed forms. Different structures of cellular secondary currents can be seen in open-channel flows due to various bed configurations. In our study, mathematical models of turbulence-induced secondary currents in the vertical and transverse directions within a straight open rectangular channel with alternate rough and smooth longitudinal bed strips are proposed. The proposed models are derived using appropriate theoretical and mathematical analysis. Most of the previous models of secondary currents in the literature are proposed empirically and without proper mathematical derivations. The effects of fluid viscosity and eddy diffusivity are included in the present study to make it more practical. Initially, the governing equation for vertical secondary flow velocity is derived from continuity and the Reynolds-Averaged Navier Stokes equations. Then, the proposed problem is divided into two sub-considerations, corresponding to the base flow and perturbed flow. Finally, these sub-problems are analytically solved using method of variables separation with suitable boundary conditions. Different models to consider two different types of bed-roughness configurations (i.e. equal and unequal lengths of smooth and rough longitudinal bed strips) are obtained. Apart from velocity formulations, models of the stream function are proposed for these two types of bed configurations. All proposed models are validated using existing experimental data for the various bed configurations in open-channel flows and satisfactory results have been obtained. These present models are also compared with empirical models from the literature and they are found to be more effective in representing both types of bed-roughness configurations. The effects of bed configuration on the streamlines of settling velocity are also investigated. Results show that laterally-skewed secondary cells (which occurs due to unequal smooth and rough bed strips), have significant effects on the closed ω-streamlines in terms of shape and location of the centre of these streamlines. More precisely, it is found that the area of the downflow zone proportionally increases with the length of rough-bed strips.
17

Development of Transitional Settling Regimen Parameters to Characterize and Optimize Solids-liquid Separation Performance

Mancell-Egala, Abdul Salim 20 September 2016 (has links)
Novel settling characteristic metrics were developed based on the fundamental mechanisms of coagulation, flocculation, and settling. The settling metrics determined parameters that are essential in monitoring and optimizing the activated sludge process without the need for expensive or specialized equipment. Current settling characteristic measurements that don't require specialized instruments such as sludge volume index (SVI) or initial settling velocity (ISV), have no fundamental basis in solid-liquid separation and only indicate whether settling is good or bad without providing information as to limitations present in a sludge matrix. Furthermore, the emergence of aerobic granulation as a potential pathway to mitigate solid-separation issues further stresses the need for new settling characteristic metrics to enable integration of the new technology with the current infrastructure. The granule or intrinsic aggregate fraction in different types was of sludge was quantified by simulating different surface overflow rates (SOR). The technique named Intrinsic Settling Classes (ISC) was able to separate granules and floc by simulating high SOR values due to the lack of a flocculation time needed for granules. The method had to be performed in a discrete settling environment to characterize a range of flocculation behavior and was able to classify the granular portion of five different types of sludge. ISC was proven to accurately (±2%) determine the granule fraction and discrete particle distribution. The major significance of the test is its ability to show if a system is producing particles that will eventually grow to become granules. This methodology proved to be very valuable in obtaining information as to the granular fraction of sludge and the granular production of a system. Flocculent settling (stokesian) was found to be predominant within ideally operating clarifiers, and the shift to 'slower' hindered settling (non-stokesian) causes both failure and poor effluent quality. Therefore, a new metric for settling characteristics was developed and classified as Limit of Stokesian Settling (LOSS). The technique consisted of determining the total suspended solids (TSS) concentration at which mixed liquor settling characteristics transition from stokesian to non–stokesian settling. An image analytical technique was developed with the aid of MATLAB to identify this transition. The MATLAB tool analyzed RGB images from video, and identified the presence of an interface by a dramatic shift in the Red indices. LOSS data for Secondary activated-sludge systems were analyzed for a period of 60 days at the Blue Plains Advanced Wastewater Treatment Plant. LOSS numbers collected experimentally were validated with the Takacs et al. (1991) settling model. When compared to flux curves with small changes in the sludge concentration matrix, LOSS was found to be faster at characterizing the hindered settling velocity and was less erratic. Simple batch experiments based on the critical settling velocity (CSV) selection were used as the basis for the development of two novel parameters: threshold of flocculation/flocculation limitation (TOF/a), and floc strength. TOF quantified the minimum solids concentration needed to form large flocs and was directly linked to collision efficiency. In hybrid systems, an exponential fitting on a CSV matrix was proposed to quantify the collision efficiency of flocs (a). Shear studies were conducted to quantify floc strength. The methods were applied to a wide spectrum of sludge types to show the broad applicability and sensitivity of the novel methods. Three different activated sludge systems from the Blue Plains AWWTP were monitored for a 1 year period to explore the relationship between effluent suspended solids (ESS) and activated sludge settling and flocculation behavior. Novel metrics based on the transitional solids concentration (TOF, and LOSS) were also collected weekly. A pilot clarifier and settling column were run and filmed to determine floc morphological properties. SVI was found to lose sensitivity (r < 0.20) when characterizing ISV above a hindered settling rate of 3 m h-1. ISV and LOSS had a strong correlation (r = 0.71), but ISV was subject to change, depending on the solids concentration. Two sludge matrix limitations influencing ESS were characterized by transition concentrations; pinpoint floc formation, and loose floc formation. Pinpoint flocs had TOF values above 400 mg TSS L-1; loose floc formation sludge had TOF and LOSS values below 400 mg TSS L-1 and 900 mg TSS L-1, respectively. TOF was found to correlate with the particle size distribution while LOSS correlated to the settling velocity distribution. The use of both TOF and LOSS is a quick and effective way to characterize limitations affecting ESS. / Ph. D.
18

Experiments on the Transformation of Mud Flocs in Turbulent Suspensions

Tran, Duc Anh 21 June 2018 (has links)
This dissertation aims to better understand how floc aggregate characteristics and behaviors are modified under different local conditions and how such alterations impact the floc settling velocity, which is one of the most crucial parameters influencing sediment transport modeling. A series of laboratory experiments were conducted to examine the impact of suspended sediment concentration, mixes of clay and silt, and resuspension process to equilibrium floc size and floc settling velocity. In order to observe floc size evolution, a new floc imaging acquisition was first developed. This new method allows flocs in suspended sediment concentration up to C = 400 mg/L can be imaged non intrusively. This new method was applied in all three individual studies, which are composed of this dissertation. The first chapter investigates the behaviors of flocs under constant and decay suspended sediment concentrations within a steady turbulent suspension. In the constant-concentration set of experiments, floc size time series were measured for 12 h for each of the concentration C = 15, 25, 50, 100, 200, 300, and 400 mg/L. In the decay-concentration experiments, clear water was introduced to the mixing tank, simultaneously the suspension was drained out of the mixing tank at the same rate to make the suspended sediment concentration reduce while the turbulent shear was remained unchanged. The data shows that the equilibrium floc size is a weak, positive function of concentration. For example, in order to increase 20% of floc size (approximate 22 um) the concentration needs to be increased by 700% (going from 50 to 400 mg/L). The data also illustrates that during the decrease of concentration from C = 400 to 50 mg/L, the floc size responses to the changes of concentration in the order of 10 min or less. The second chapter examines how silt particles and clay aggregates interact in a turbulent suspension. Floc sizes and settling velocity of three different suspensions, i.e., pure clay, pure silt, and a mixture of clay and silt, were monitored. The floc size data show that the presence of silt particles does not have significant impacts on clay aggregate sizes. Silt particles, however, get bound up within floc aggregates, which in turn increase the settling velocity of the floc by at least 50%. The third chapter examines whether any changes in floc properties during the deposition and resuspension processes. The floc sizes and shapes in a set of experiments with different consolidation times, concentrations, and shear patterns were measured. The conditions at which the flocs deposited or resuspended were maintained the same. The data reveal that floc size and shape of freshly deposited and after resuspended are unchanged. The erosion rate and concentration is a function of consolidation time and the applied shear stress during the deposition phase. Hence, there is a small reduction in resuspended concentration resulting in a slight decrease in resuspension floc size since floc size is also a function of concentration. / Ph. D.
19

The Development of an In-situ Mud Floc Microscope Imaging Device and In-situ Floc Observations from the Lowermost Mississippi River

Osborn, Ryan Todd 20 May 2021 (has links)
Mud makes up a large fraction of sediment transported within rivers to the coasts. Predicting where mud will settle is complicated by the cohesive nature of silts and clays, which can combine to form larger aggregates known as flocs. The size and density, and consequently, the settling velocity, of flocs is highly dynamic and depends on factors such as turbulence levels within the flow and biogeochemical components of the water and sediment. To better predict where mud will deposit, more observations of flocs while in their natural environment is required to better understand the controls on when, where, and to what degree mud is flocculated. However, the need for more field observations is complicated by the dynamic and fragile nature of flocs. This necessitates the need for developing in-situ observation methods to ensure that measured floc sizes are representative of their in-situ size, and not a result of sampling methods. In this thesis, a new instrument for in-situ observation of flocs is presented. In addition, two methods using the data collected from the instrument allow the user to: (1) identify sand within the particle data using a machine learning algorithm, and (2) estimate the mass suspended sediment concentration of the mud and sand fractions of suspended sediment independently. Results from using the instrument in the lowermost Mississippi River reveal differences in floc sizes over the water column, and by season. In addition, a unique observation of flocs in the presence of a salt wedge is presented. Overall, the instrument provided the first known observations of flocs within the Mississippi River, and provides a start to better understanding controls on floc sizes within the fluvial environment. / Master of Science / Flowing water within large rivers carries sediments such as sand and mud to the coasts. Some of the larger sediment carried by rivers can fall to the riverbed if the river does not have enough energy to carry it in the flow. The remaining sediment can be carried to the coasts where it will fall to the bed, providing the material necessary for estuaries or deltas to form and grow. Understanding when and where sediment falls to the bed within rivers, estuaries, and deltas, allows scientists and engineers to predict how these landforms will change over time to better manage them under future climate conditions. Predicting where mud will fall to the bed is particularly difficult because mud has the ability to stick together to form larger aggregates. These aggregates, known as mud flocs, are constantly changing in size depending on the energy in the river and water conditions. As the mud flocs change in size, the speed at which they fall to the bed changes. As such, observing mud flocs while they are in their natural environment is required to understand the conditions under which they form and change in size. This thesis presents a new instrument that can be used to collect images of mud flocs while they are in their natural environment. Results from using the instrument to observe mud flocs in the lowermost Mississippi River are then presented. This new instrument, and observations of mud flocs made with it, provides new insight into mud floc size within the lowermost Mississippi River.
20

Two Approaches for Cell Retention in Perfusion Culture Systems

Wang, Zhaowei January 2009 (has links)
No description available.

Page generated in 0.1328 seconds