• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1964
  • 1900
  • 365
  • 227
  • 184
  • 146
  • 83
  • 54
  • 53
  • 48
  • 46
  • 38
  • 26
  • 24
  • 24
  • Tagged with
  • 6192
  • 1010
  • 778
  • 721
  • 628
  • 626
  • 615
  • 587
  • 536
  • 506
  • 461
  • 453
  • 399
  • 382
  • 374
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
861

Vztah mezi silovými poměry adduktorů, abduktorů, externích a interních rotátorů kyčle k rychlosti střelby u hráčů ledního hokeje / The relationship between strength ratios of hip abductors, adductors, internal, external rotators and speed of shouting in ice hockey players

Hučko, Petr January 2019 (has links)
Title: Relation between power ratios of adductors, abductors, external and internal hip rotators at shooting speed of ice hockey players Objectives: The main aim of this thesis is to find out the relationship between the rate of fire on the ice and the strength abilities of the hand and hip rotators Methods: The research group consisted of 20 adult probands (age = 24.8 ± 3.4; height = 181 cm ± 6.13 cm; weight = 80.1 kg ± 9.9 kg). The research took place in the summer preparation period after the season. The laboratory tests were carried out at the Charles University FTVS under the supervision of qualified and trained experts. An isokinetic dynamometer (Cybex NORM ®, Humac, CA, USA) was used to test external and internal rotators. A hand isometric dynamometer (Takei 5401) was used to evaluate the handgrip. Field tests were conducted on the ice, where the rate of fire was recorded using radar (V-max). Results: The results showed a significant degree of association between SBN and SVN shooting and rotator force at concentric contraction (30ř∙s-1 , 90ř∙s-1 ) for the dominant leg, reaching values (r = 0.45) for the angular velocity of 30ř∙s-1 and at higher angular velocities it assumed values (r = 0.44 and 0.54). Statistical analyzes also showed a significant degree of association between SVN-firing and...
862

The relationship between impairments in muscle performance, functional limitations, and disability in older adults

Puthoff, Michael Leonard 01 January 2006 (has links)
Many older adults develop restrictions in the performance of activities that are essential to daily living, referred to as functional limitations. Functional limitations can lead to disability, the inability to complete tasks necessary to function in society. A better understanding of how impairments in body systems affect functional limitations and disability in older adults could lead to improved medical management of older adults. The purpose of this study was to examine how impairments in lower extremity muscle performance (strength, power, and endurance) are related to functional limitations and disability in community dwelling older adults. Thirty-four subjects were recruited to participate in this cross-sectional analysis study with 30 individuals completing the study. The Keiser 420 Leg Press was used to measure impairments in lower extremity muscle performance. Functional limitations were classified through the Short Physical Performance Battery, the Six-Minute Walk Test, the Late Life Function and Disability Index (LLFDI) Functional Limitation Component, and average walking speed, average walking distance and average number of steps per day over a six-day period obtained from the AMP 331 physical activity monitor. Disability was measured through the LLFDI Disability Component Limitation Category. Regression analysis was used to examine the direct effect between impairments in muscle performance and functional limitations. Mediation analysis was used to examine the indirect effect of impairments on disability. The results of this study support a relationship between impairments in lower extremity strength and power to functional limitations and disability in community dwelling older adults. Impairments in lower extremity power consistently demonstrated a stronger relationship than strength to all measures of functional limitations and disability. The results of this study did not support a relationship of impairments in endurance to functional limitations or disability. The overall findings of this study would indicate that community dwelling older adults should focus on maintaining and improving lower extremity strength and power across a range of relative intensities in order to decrease functional limitations and disability.
863

Flexural strength of interim fixed prosthesis materials after simulated function

Heying, Jamie John 01 December 2009 (has links)
Statement of Problem There are limited studies evaluating the effect of a cyclic load on interim fixed prosthetic materials and its effect on flexural strength. Purpose of Study 1) To verify the flexural strength of previously studied interim fixed prosthetic materials. 2) To establish the flexural strength of new, advanced generation and untested interim fixed prosthetic materials. 3) To determine the effect of cyclic load on the flexural strength of interim fixed prosthetic materials. Materials and Methods Bar-type specimens of Caulk Temporary Bridge Resin, VitaVM CC, Protemp 3 Garant and Radica were fabricated according to International Standards Organization 4049 and American National Standards Institute/American Dental Association specification 27. After being stored in distilled water for 10 days, specimens were divided into Noncycled and Cycled Groups. The Noncycled Group specimens were fractured under a 3-point loading in a Bose Electroforce 3300 testing instrument at a crosshead speed of 0.75 mm/min. Cycled Groups specimens underwent a 6-12 Newton 3 Hertz cyclic load for 20,000 cycles in a Bose Electroforce 3300 testing instrument. Immediately following completion of the cycles, the specimens were fractured under a 3-point loading. Maximal loads to fracture in Newtons were recorded and mean flexural strengths were calculated (n = 20 per group). Comparisons were made with analysis of variance and Tukey's Multiple Comparison Test. Results Noncycled (NC) and Cycled (C) groups order of mean flexural strengths (MPa) from lowest to highest mean were as follows: Caulk (Noncycled - 53.83; C - 60.02), Vita VM CC (NC - 65.96; C - 66.83), Protemp 3 Garant (NC - 75.85; C - 77.18), and Radica (NC - 106.1; C - 115.96). In the Noncycled and Cycled groups, Radica was statistically superior when compared to all materials and Protemp 3 Garant was statistically superior to Caulk Temporary Bridge Resin. There was no statistically significant difference between the material's flexural strengths before and after cycles. Conclusion Within the limitations of this study, 20,000 cyclic loads of 6-12 Newtons at 3 Hertz did not have a significant effect on the flexural strength of interim fixed prosthetic materials. Radica demonstrated significantly superior flexural strength over other materials tested.
864

Rock Strength of Caprock Seal Lithologies: Evidence for Past Seal Failure, Migration of Fluids and the Analysis of the Reservoir Seal Interface in Outcrop and the Subsurface

Petrie, Elizabeth Sandra 01 May 2014 (has links)
This research characterizes the nature of fractures in Paleozoic and Mesozoic caprock seal analogs exposed in central and south-eastern Utah. The results of this research show evidence for fluid flow and mineralization in the subsurface as well as reactivation of fractures suggesting that the fractures act as a loci for fluid flow through time. The heterolithic nature of the caprock seals and meso-scale (cm to m) variability in fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density at the meso-scale plays a critical role in subsurface fluid flow. The presence or formation of new fractures can result in seal bypass systems, which can cause failure of hydrocarbon traps, CO2 geosequestration sites, waste and subsurface fluid repositories. An integrated approach of field, borehole geophysical, burial and stress history modeling, rock strength testing, and numerical modeling are used to understand the effects changing material properties, rock strength, and stress history have on sealing capacity. Simplified stress history models derived from burial history curves are combined with laboratory derived rock properties to understand the importance variations in rock properties and differential and effective mean stress have on the mechanical failure of fine-grained clastic sedimentary rocks. Burial history and rock strength data show that in units that experience similar burial depths and changing mechanical property exert a control on deformation type. Geomechanical models reveal changes in local strain magnitudes at locked mechanical interfaces, suggesting that elastic mismatch between layers results in differential strain distribution. Characterization of fracture patterns, rock strength variability and the modeled changes in subsurface strain distribution is especially important for understanding the response of low-­‐permeability rocks to changing stress in the subsurface, and is applicable to multiple geo-engineering scenarios such as exploitation of natural resources, waste disposal, and management of fluids in the subsurface. The analyses presented in this dissertation provide analog fracture data for fine-grained clastic rocks and a dataset for better understanding the importance of heterogeneity in low permeability rocks.
865

Quadriceps strength prediction equations in individuals with ligamentous injuries, meniscal injuries and/or osteoarthritis of the knee joint

Colvin, Matthew January 2007 (has links)
The objective of this study was to investigate the accuracy of eleven prediction equations and one prediction table when estimating isoinertial knee extension and leg press one repetition maximum (1-RM) performance in subjects with knee injuries and knee osteoarthritis. Study Design: A descriptive quantitative research study was undertaken utilizing a cross-sectional design. Background: Traumatic injuries and osteoarthritis are common musculoskeletal pathologies that can disrupt normal function of the knee joint. A frequent sequela of these pathologies is quadriceps femoris muscle weakness. Such weakness can contribute to disability and diminished levels of functional and recreational activity. Therefore, safe and accurate methods of measuring maximal strength are required to identify and quantify quadriceps strength deficits. One option proposed in the literature is the use of 1-RM prediction equations which estimate 1-RM performance from the number of repetitions completed with sub-maximal loads. These equations have been investigated previously using healthy populations and subjects with calf muscle injuries. However, to date, no known study has investigated their accuracy in individuals with joint pathologies. Method: Machine-weight seated knee extension and seated leg press exercises were investigated in this study. Twenty subjects with knee injuries and 12 subjects with knee OA completed the testing procedures for the knee extension exercise. Nineteen subjects with knee injuries and 18 subjects with knee OA completed the testing procedures for the leg press exercise. All subjects attended the testing venue on three occasions. At the first visit a familiarization session was carried out. At the second and third visits each subject was randomly assigned to perform either actual or predicted 1-RM testing for both of the exercises. Twelve different prediction methods were used to estimate 1-RM performance from the results. The estimates of 1-RM strength were then compared to actual 1-RM performance to assess the level of conformity between these measures. Statistical procedures including Bland and Altman analyses, intraclass correlation coefficients, typical error and total error of measurement were used in the analyses of the results. In addition, paired t-tests were performed to determine whether actual 1-RM values were significantly different across the control and affected limbs and whether there were any significant differences in predictive accuracy for each equation across the control and affected limbs. Finally, the number of subjects with predicted 1-RM values within 5% or less of their actual 1-RM values was determined for each equation. Results: When the knee injury group performed the knee extension exercise, the Brown, Brzycki, Epley, Lander, Mayhew et al., Poliquin and Wathen prediction methods demonstrated the greatest levels of predictive accuracy. When two atypical subjects were identified and excluded from the analyses, the accuracy of these equations improved further. Following the removal of these two subjects, no significant differences in predictive accuracy were found for any of the equations across the affected and control limbs (p > 0.05). Typical errors and total errors were low for the more accurate prediction methods ranging from 2.4-2.8% and from 2.4-3.5%, respectively. Overall, the Poliquin table appeared to be the most accurate prediction method for this sample (affected limbs: bias 0.3 kg, 95% limits of agreement (LOA) -5.8 to 6.4 kg, typical error as a coefficient of variation (COV) 2.4%, total error of measurement (total error) 2.4%; control limbs: bias -1.3 kg, 95% LOA -9.0 to 6.3 kg, typical error as a COV 2.7%, total error 2.8%). When the knee OA group performed the knee extension exercise, the Brown, Brzycki, Epley, Lander, Mayhew et al., Poliquin and Wathen prediction methods demonstrated the greatest levels of predictive accuracy. No significant differences in predictive accuracy were found for any of the equations across the affected and control limbs (p > 0.05). When an atypical subject was identified and excluded from the analyses, the accuracy of the equations improved further. Typical errors as COVs and total errors for the more accurate prediction methods ranged from 2.5-2.7% and from 2.4-2.9%, respectively. Overall, the Poliquin table appeared to be the most accurate prediction method for this sample (affected limbs: bias 0.9 kg, 95% LOA -4.5 to 6.3 kg, typical error as a COV 2.5%, total error 2.5%; control limbs: bias -0.1 kg, 95% LOA -6.0 to 5.9 kg, typical error as a COV 2.5%, total error 2.4%). When the knee injury group performed the leg press, the Adams, Berger, Lombardi and O’Connor equations demonstrated the greatest levels of predictive accuracy. No significant differences in predictive accuracy were found for any of the equations across the affected and control limbs (p > 0.05). Typical errors as COVs and total errors for the more accurate equations ranged from 2.8-3.2% and from 2.9-3.3%, respectively. Overall, the Berger (affected limbs: bias -0.4 kg, 95% LOA -7.2 to 6.3 kg, typical error as a COV 3.2%, total error 3.2%; control limbs: bias 0.1 kg, 95% LOA -6.6 to 6.7 kg, typical error as a COV 3.1%, total error 3.0%) and O’Connor equations (affected limbs: bias -0.6 kg, 95% LOA-6.8 to 5.7 kg, typical error as a COV 2.9%, total error 3.0%; control limbs: bias -0.2 kg, 95% LOA -6.9 to 6.4 kg, typical error as a COV 2.9%, total error 2.9%) appeared to be the most accurate prediction methods for this sample. When the knee OA group performed the leg press, the Adams, Berger, KLW, Lombardi and O’Connor equations demonstrated the greatest levels of predictive accuracy. No significant differences in predictive accuracy were found for any of the equations across the affected and control limbs (p > 0.05). The typical errors as COVs and the total error values for the more accurate prediction methods were the highest observed in this study, ranging from 5.8-6.0% and from 5.7-6.2%, respectively. Overall, the Adams, Berger, KLW and O’Connor equations appeared to be the most accurate prediction methods for this sample. However, it is possible that the predicted leg press 1-RM values produced by the knee OA group might not have matched actual 1-RM values closely enough to be clinically acceptable for some purposes. Conclusion: The findings of the current study suggested that the Poliquin table produced the most accurate estimates of knee extension 1-RM performance for both the knee injury and knee OA groups. In contrast, the Berger and O’Connor equations produced the most accurate estimates of leg press 1-RM performance for the knee injury group, while the Adams, Berger, KLW and O’Connor equations produced the most accurate results for the knee OA group. However, the higher error values observed for the knee OA group suggested that predicted leg press 1-RM performance might not be accurate enough for some clinical purposes. Finally, it can be concluded that no single prediction equation was able to accurately estimate both knee extension and leg press 1-RM performance in subjects with knee injuries and knee OA.
866

Respiratory function as a measure of muscle strength in young boys with Duchenne Muscular Dystrophy

Webster, Richard Ian, School of Women & Children's Health, UNSW January 2003 (has links)
AIMS: To evaluate the use of Manual Muscle Strength Tests (MMST), Timed Functional Tests (TFT) and Respiratory Function Tests (RFT) as measures of muscle strength in young boys with Duchenne Muscular Dystrophy (DMD) and specifically to evaluate the use of Peak Expiratory Flow (PEF). BACKGROUND: There is a need to measure the effect of treatments that potentially increase muscle strength in DMD. PEF may have advantages over Vital Capacity (VC) as a measure of respiratory function in young boys with DMD. METHODS: 17 boys with DMD (aged 5-10 years) were assessed regularly over one year. Assessment involved Respiratory Function Testing (PEF, VC, Forced Expiratory Volume in one second [FEV1]), Timed Functional Testing (walking 9 metres, climbing four stairs, arising from supine) and MMST. A single investigator performed MMST and TFTs. A separate investigator performed RFTs. For RFTs a percentage of predicted was calculated [PEF(%), FEV1(%), VC(%)].11/17 boys were treated with prednisolone which increases strength in DMD. RESULTS: At baseline, all boys had significant weakness. Mean (+/- SD) PEF(%) 69 +/- 13% and VC(%) 77 +/- 18% were abnormal. Baseline PEF(%) predicted correlated with MMST (P=0.003) and time to walk 9 metres (P=0.022). Baseline VC(%) correlated with MMST (P=0.049). There was a consistent statistically significant correlation between MMST and all TFTs. PEF was performed well on 80% of occasions, spirometry on 65%. Changes in PEF(%) showed statistically significant correlation with changes in all TFTs. The correlation was not statistically significant for VC(%) or FEV1(%). Prednisolone treated boys did better than those not treated. PEF, time to walk 9 metres and time to climb 4 stairs showed statistically significant improvement. The mean improvement from baseline in PEF(%) was 19 +/-14% in treated and 2 +/- 7% in untreated boys (P=0.012). CONCLUSIONS: MMST, TFTs and RFTs are valid measures of muscle strength in young boys with DMD. PEF is abnormal in young boys with DMD; correlates with other measures of strength and is sensitive to changes in strength. PEF is more easily performed than spirometry and has a role in monitoring muscle strength in young boys with DMD.
867

Lateral strength of zero bond masonry walls subjected to wind loads

Schulze, Peter, peter.schulze@deakin.edu.au January 1978 (has links)
Masonry walls are usually laid with the individual masonry units along a course overlapping units in the course below. Commonly, the perpend joints in the course occur above the mid-points of the units below to form a ‘half-bond’ or above a third point to form a ‘third-bond’. The amount of this overlap has a profound influence on the strength of a wall supported on three or four sides, where lateral pressures from wind cause combined vertical and horizontal flexure. Where masonry units are laid with mortar joints, the torsional shear bond resistance between the mortar and overlapping units largely determines the horizontal flexural strength. If there is zero bond strength between units, then the horizontal flexural strength is derived from the frictional resistance to torsion on the overlapping bed-faces of the units. This thesis reports a theoretical and experimental investigation into the frictional properties of overlapping units when subjected to combinations of vertical and horizontal moments and vertical axial compression. These basic properties were used to develop a theory to predict the lateral strength of walls supported on two, three or four sides. A plastic theory of behaviour was confirmed by experiment. The theory was then used to determine maximum unbraced panel sizes for particular boundary conditions. Design charts were developed to determine temporary bracing requirements for panels during construction.
868

Relationships between selected speed strength performance tests and temporal variables of maximal running velocity

Faccioni, Adrian, n/a January 1995 (has links)
The relationships between selected sprint specific bounding exercises and sprint performance were analysed using fourteen sprint athletes (7 elite performers, 7 sub-elite performers). Subjects were required to perform sprints over 60m, Counter Movement Jumps with and without loading (20kg), High Speed Alternate Leg Bounding over 30m and High Speed Single Leg Hopping over 20m. All athletes were subject to anthropometric measurement (Height, Weight and Leg Length). Of all variables measured, the Elite group were significantly better (p<0.001) in Counter Movement Jump, Time to 60m, Time from 30m to 60m and in their Maximal Running Velocity. Linear regressions were carried out on all variables that correlated with Time to 30m (Acceleration Phase) and Maximal Running Velocity at both the pO.OOl and p<0.01 level of significance. This allowed several prediction tables to be compiled that had performance measures (sprints and jumps) that could be used as testing measures for sprint athletes to determine their Acceleration Phase and Maximal Running Velocity. A stepwise multiple regression demonstrated that Time to 60m was the best predictor of Maximal Running Velocity. Time to 60m, Leg length, High Speed Alternate Leg Bounding and Sprint Stride Rate were the best predictors of the Acceleration Phase. A Stepwise cross-validation linear discriminant function analysis was used to determine the best predictors from both sprint and jump measures that would distinguish an athlete as an elite or sub-elite performer. From sprint variables, Time to 60m and Time to 30m were the two variables that best placed a sprint subject in either the Elite or Sub-elite group. From the bounding variables, Counter Movement Jump and the Ground Contact Time of the High Speed Alternate Leg Bounding were the two variables that best placed a sprint subject in either the Elite or Sub-elite group. The present study suggests that Time to 60m is the best predictor of Maximal Running Velocity and Acceleration Phase. Counter Movement Jumping and High speed Alternate Leg Bounding are also useful tools in developing and testing elite sprint athlete performance.
869

The relationship between strength and endurance in female triathletes

McElligott, Mark, n/a January 1992 (has links)
n/a
870

Influence of Chloride-induced corrosion cracks on the strength of reinforced concrete

Tang, Denglei, Denglei.Tang@gmail.com January 2008 (has links)
In marine environments and where de-icing salts are applied, the degradation of reinforced concrete structures due to chloride induced corrosion of the reinforcement is a major problem. The expansive nature of the corrosion process results in cracking of the concrete and eventually spalling. In order to select suitable remedial measures it is necessary to make an assessment of the residual strength and the residual life. In order to investigate the effect of corrosion on bond strength of the reinforcement, specimens comprising square prismatic sections containing steel reinforcement in the four corners have been subjected to a wet-dry cycle and corrosion has been accelerated by polarising the bars. The research has studied the change of bond strength with level of corrosion for 12 mm and 16 mm bars with concrete cover of 1 and 3 times the bar size. The bond strength is assessed by means of pull out tests and the corresponding extent of corrosion has been assessed in terms of the mass loss. Observations and measurements of the form of the corrosion (pit dimensions and loss of bar diameter) are also presented. The relationship between bond strength and surface crack width has been investigated. Results show that the surface crack width may be a good indicator of residual bond strength. In addition, the influence on bond strength of concrete compressive strength, reinforcement cover, bar position and bar size on the change of bond strength has been explored. It should be noted that all conclusions drawn in this project are based on tests on specimens without shear reinforcement (unconfined) and that accelerated corrosion (by impressed current) has been adopted. Consequently, care should be exercised in applying these results directly to structures in the field. Additional research is needed to assess the influence of impressed current on crack patterns and the effect of shear reinforcement.

Page generated in 0.0387 seconds