• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1964
  • 1900
  • 365
  • 227
  • 184
  • 146
  • 83
  • 54
  • 53
  • 48
  • 46
  • 38
  • 26
  • 24
  • 24
  • Tagged with
  • 6192
  • 1010
  • 778
  • 721
  • 628
  • 626
  • 615
  • 587
  • 536
  • 506
  • 461
  • 453
  • 399
  • 382
  • 374
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
911

Mechanical Properties and Deformation Behaviors in Amorphous/Nanocrystalline Multilayers under Microcompression

Liu, Ming-che 24 October 2011 (has links)
BMGs (bulk metallic glasses) exhibit many exceptional advantages for engineering applications, such as high strength, good corrosion resistance, etc. Despite of having these excellent properties, the brittle nature of metallic glasses in the bulk and thin film forms inevitably imposes limitation and restricts the wide application of BMGs and TFMGs. Composite concept might be another idea to solve this dilemma. In order to manufacture the bulk metallic glass composites (BMGCs), the approaches are classified into two categories: the intrinsic and extrinsic methods. For the intrinsic method, the in situ process and heat treatment process are two kinds of ways in common uses. Adding reinforcements into the BMGs or TFMGs is extensively used to manufacture composites in the extrinsic method. In this study, the deformation behaviors of multilayer (amorphous/nanocrystalline) micropillars are studied by uniaxial microcompression tests at room temperature. The nanocrystalline layer to be coupled with the amorphous layer can be of either face-centered cubic (FCC), hexagonal close-packed (HCP) or body-centered cubic (BCC) in crystal structure. The current study demonstrates that brittle problem of a metallic glass coating can be alleviated by percolating with a nanocrystalline metallic underlayer. The brittle thin film metallic glass can become highly ductile and exhibit a plastic strain over 50% at room temperature. The present study has an important implication for MEMS applications, namely, the life span of a brittle amorphous layer can be significantly improved by using an appropriate metallic underlayer. The brittle problem of thin film ZrCu metallic glasses was also treated by invoking soft Cu layers with optimum film layer thickness. Such multilayered amorphous/crystalline samples exhibit superplastic-like homogeneous deformation at room temperature. It is found that the deformability of the resultant micropillars depends on the thickness of Cu layers. Microstructural observations and theoretical analysis suggest that the superplastic-like deformation mode is attributed to homogeneous co-deformation of amorphous ZrCu and nanocrystalline Cu layers because the 100 nm-thick Cu layers can provide compatible flow stress and ¡§plastic zone¡¨ size well matched with those of ZrCu amorphous layers. Besides, we also made attempts to investigate the critical sample size below which shear band localization would disappear and the sample can deform homogeneously. In situ TEM compression was conducted on amorphous ZrCu nanopillars to study shear band formation behavior. The nanopillar is 140 nm in diameter and with a taper angle of 3¢X. Experimental observations and simulations based on a free-volume model both demonstrate that the deformation was localized near the top of the tapered metallic glass pillar. Eventually, the interface nature of metallic glass amorphous/crystalline was characterized through evaluating its energy and validated by the mechanical response of micropillar with ~45o inclined interface under compression. The calculated results showed that the ZrCu/Zr interface energy resides several joules per meter square, meaning that the Zr/ZrCu interface is inherently strong. The high strong adhesion ability of ZrCu/Zr interface was further confirmed by shear fracture happening rightly within the Zr layers rather than along the interface when compressing the ZrCu/Zr micropillars with 45o inclined interface.
912

How is it possible to chant Buddha for rebirth in Amitabha¡¦s Pure Land-Focus on Literatures of Master Yin-Guang

Tsai, Chin-Yuan 25 June 2012 (has links)
This paper aims to investigate the basic problem of Chanting Method in the Pure Land Buddhism . To rebirth in Pure Land by practicing the method of Buddha-Chanting, it would face the question and solution of modernity. The statistics of Pure Land Buddhism acceptable to most people indicate that even there are many people practicing the method of Buddha-Chanting, but few people really rebirth in Amitabha¡¦s Pure Land. The author of this paper discusses the topic with regard to Pure Land sutras in the Da Zheng Zang and the literatures of Master Yin-Guang to view if the contemporary practicer misunderstanding the purpose of Buddha-Chanting for rebirth in Amitabha¡¦s Pure Land. And provides a more detailed interpretation of Amitabha Pure Land methodology.
913

Influence of hot rolling microstructure on mechanical properties of fullyannealed 5052 aluminum alloy

Hung, Liang-Jie 24 July 2012 (has links)
The objective of this work is to investigate the influence of hot rolling process on the mechanical properties of AA 5052 aluminum alloy. Hot-rolled band fabricated by tandem mill (hot-band A) will be compared with that fabricated by reverse mill hot-band C). Optical microscopic observations revealed that hot-band A has a uniform microstructure throughout the thickness, while hot-band C exhibits non-uniform microstructure, fine grains near the surface and coarser grains in the center. Both hot-bands were subjected to cold-rolling and annealing to O-temper. Two annealing processes were used: (a) annealing in 500oC salt bath, which may simulate the high heating rate of continuous annealing line (CAL), and (b) annealing in 320oC conventional air furnace with heating rate of 30oC/h, which may simulate the slow heating rate of batch-type annealing. In general, both materials annealed in 320oC air furnace exhibit higher yield strength than those annealed in 500oC salt bath do, however, both materials exhibit better tensile ductility after annealed in 500oC salt bath as compared with those annealed in 320oC air furnace.TEM examinations indicated that the cold-rolled sheet after annealing in 320oC air furnace contains larger number of precipitates comparing with its 500oC salt bath annealed counterpart. This observation may account for the higher yield strength of cold-rolled sheet annealed in 320oC air furnace. After cold-rolling and annealing in 320oC air furnace, the material C shows higher yield strength than the material A does. However, after annealing in 500oC salt bath, both materials have similar yield strength. XRD pole-figure analysis indicated that hot-band A exhibited stronger texture than hot-band C did. The texture intensity for both materials decreased considerably after cold-rolling and annealing. Orientation image mapping (OIM) obtained by EBSD (electron backscattered diffraction) analysis indicated that the grain boundaries in both materials after cold-rolling and annealing were mainly high angle boundaries, and the 500oC salt bath annealed specimens have more equiaxed grain shape as compared with the 320oC air furnace annealed specimens.
914

Crystallization Effect on Self-Assembly of Double-Crystalline Block Copolymers

Huang, You-Wei 06 August 2012 (has links)
Double crystalline block copolymers (BCPs), syndiotactic poly(4-methyl-1-pentene)-b-poly(L-lactide) (sPMP-PLLA) and syndiotactic poly(4-methylstyrene)-b-poly(L-lactide) (sPMS-PLLA), were synthesized to examine crystallization effect on the self-assembled morphologies in the double crystalline BCPs. Because of the stainable chemical structures, morphological observation can be carried out in these double crystalline BCPs. Also, different microphase-separated structures including lamellae and hexagonally packed cylinders were explored to study the shape effect for double crystallization. Based on differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) results, both sPMP and PLLA blocks are able to crystallize in the sPMP-PLLA BCP (fsPMPv=0.52) at the crystallization temperature (Tc) from 80¢XC to 120¢XC. Notably, temperature-dependent phase transitions between the PLLA polymorphisms are obtained by WAXD. By using small-angle X-ray scattering (SAXS) and transmission electron microscope (TEM), the microphase-separated lamellar structures can be observed in the sPMP-PLLA BCP (fsPMPv=0.52). Also, the preservation of the lamellar morphology at all Tcs (80¢XC~120¢XC) indicates that the sPMP and PLLA crystallization can be strongly confined within the lamellar microstructures due to the strong segregation strength of the sPMP-PLLA (fsPMPv=0.52) BCP. This can be further demonstrated by the ambiguous birefringence under polarized light microscope (PLM). According to the time-resolved SAXS and WAXD profiles at 90oC and 110oC, the sPMP block crystallizes first and induces the enlargement of the BCP long period. Also, the leading sPMP crystallization gives rise to the robust lamellar microstructural template and result in strong confinement for the subsequent PLLA crystallization. In the sPMS-PLLA BCP (fsPMSv=0.58), the microphase-separated lamellar nanostructures can be found by SAXS and TEM. DSC analysis shows that PLLA block is able to crystallize as Tc=90¢XC~100¢XC; the sPMS block is able to crystallize as Tc ≥120oC. By self-nucleation processes, both sPMS and PLLA blocks are able to crystallize. Therefore, by the manipulation of the respective crystallization, two-stage crystallization and coincident crystallization, systematic studies in the semi-crystallization, double crystallization and coincident double crystallization with the accompanying environmental Tg effect and BCP segregation strength can be carried out in the lamella-forming sPMS-PLLA (fsPMSv=0.58) BCP. By SAXS and TEM, the microphase-separated lamellar microstructures can be preserved in the self-assembly of the sPMS-PLLA (fsPMSv=0.58) BCP whatever the PLLA crystallization occurs under hard confinement (Tc,PLLA<Tg,sPMS) or soft confinement(Tc,PLLA˃Tg,sPMS). For the sPMS crystallization under soft confinement, the lamellar microstructures can be preserved as Tc,sPMS ≤140oC, whereas the breakout morphology by the sPMS crystallization is found as Tc,sPMS ≥150oC. As a result, the final morphologies is strongly dependent on the BCP segregation strength in the lamella-forming sPMS-PLLA (fsPMSv=0.58) BCP. In sPMS-PLLA BCP (fsPMSv=0.7), hexagonally-packed PLLA cylinders in the sPMS matrix are obtained by SAXS and TEM. DSC analysis shows that the sPMS block is able to crystallize as Tc=130¢XC~180¢XC, whereas no PLLA crystallization can be found in the cylinder-forming sPMS-PLLA BCP (fsPMSv=0.7). This indicates that the 2-D cylindrical shape might give rise to the strong confined effect and result in non-crystallizable PLLA. According SAXS and TEM results, the intrinsic hexagonally-packed cylinders can be preserved after the sPMS crystallization at 130oC due to the strong BCP segregation strength. By contrast, the crystallization driving force may overwhelm the microphase separation so as to form breakout morphology in the sPMS-PLLA (fsPMSv=0.7) BCP as Tc≥150¢XC.
915

Modeling of nano-particle motion: subjected to press of two moving bodies

Chang, Shao-Heng 05 September 2012 (has links)
This dissertation aims to establish a mathematical model to predict the steady-state (stationary) motion of a nano-particle that is suppressed between two parallel moving objects. The main purpose of this study intends to find an appropriate means to reduce surface damage caused by moving nano-paricle. This study will show that, via the molecular dynamics (MD) analysis, the surface will result in different sizes of damaged layer and surface roughness when a nano-particle moves in a distinct way on it. Therefore, it has a significant value in the applications of high precision polishing and surface cleaning to identify the dominant factors in affecting the motion of nano-particle. The proposed model is to find the steady-state motion by meeting the conditions of force and torque balances on a moving nano-particle. Several hypotheses are suggested to derive the interaction force occurred at the interface between particle and each object. The hypothesis starts from the energy point of view. It is claimed that the potential and kinetic energies of object atoms will increase when nano-particle moves relative to the object. Because of the relative motion, some of the object atoms will be pushed or driven away, depending on the manner of motion. The increment of potential or kinetic energies is assumed to be proportional to the number of pushed or driven atoms. The increase of energy is supplied from the works done by the normal stress and shear stress at the interface of particle. The interaction at the front end of particle is very different from that at the rear end when particle rolls on object surface. There is a pushing action at the front end while a pulling action occurs at the rear end. The magnitudes of both actions are dominated and proportional to the adhesive strength between particle and object. The computer simulations show that the particle motion is mainly affected by the relative adhesive strength among particle and two objects. If the adhesive strength between particle and one object increase, the particle will increase the sliding speed relative to another object. On the other hand, if the adhesive strength between particle and one object is close to that of another object, the particle tends to have significant rolling motion relative to two objects. The suppressed loading between particle and objects has little effect on the qualitative trend of particle motion. The validity of proposed model is evaluated by the molecular dynamics simulation. It indicates that the predicted behaviors of proposed model are consistent with that from the analysis of molecular dynamics simulations.
916

A characterization of the interfacial and interlaminar properties of carbon nanotube modified carbon fiber/epoxy composites

Sager, Ryan James 15 May 2009 (has links)
The mechanical characterization of the interfacial shear strength (IFSS) of carbon nanotube (CNT) coated carbon fibers and the interlaminar fracture toughness of woven fabric carbon fiber/epoxy composites toughened with CNT/epoxy interleave films is presented. The deposition of multiwalled carbon nanotubes (MWCNT) onto the surface of carbon fibers through thermal chemical vapor deposition (CVD) was used in an effort to produce a graded, multifunctional interphase region used to improve the interfacial strength between the matrix and the reinforcing fiber. Characterization of the IFSS was performed using the single-fiber fragmentation test. It is shown that the application of a MWCNT coating improves the interfacial shear strength between the coated fiber and matrix when compared with uncoated fibers. The effect of CNT/epoxy thin interleave films on the Mode I interlaminar fracture toughness of woven fabric carbon/epoxy composites is examined using the double-cantilever beam (DCB) test. Initiation fracture toughness, represented by critical strain energy release rate (GIC), is shown to improve over standard un-toughened composites using amine-functionalized CNT/epoxy thin films. Propagation fracture toughness is shown to remain unaffected using amine-functionalized CNT/epoxy thin films with respect to standard un-toughened composites.
917

Nanoscale Growth Twins in Sputtered Copper Films

Anderoglu, Osman 2010 May 1900 (has links)
The focus of this research is the development of high strength, high conductivity copper films. Pure copper is soft and traditional strengthening mechanisms cause substantial decrease in conductivity. To address the challenge, epitaxial nanotwinned copper films are synthesized on HF etched Si (110) substrates. These films show high hardness (~ 2.8 GPa) due to high density of coherent twin boundaries (CTBs) which effectively block the motion of dislocations similar to grain boundaries (GBs). Resistivity of CTBs is calculated to be an order of magnitude lower than that of GBs. Hence, conductivity of nanotwinned copper is still comparable to that of pure copper. In addition, it is shown that average twin spacing can be controlled by adjusting deposition rate. Analytical studies together with experimental evidence show that nanotwins can improve the strength-to-resistivity ratio significantly in copper. In general, nanocrystalline metals suffer from low ductility. To study plastic deformation via rolling, thick polycrystalline nanotwinned copper foils are sputtered on SiO2 and then peeled off the substrate. Despite the high strength, room temperature rolling experiments show that nanotwinned copper films exhibit stable plastic flow with no shear localization or fracture even at thickness reduction of over 50%. Postdeformation studies of microstructure reveals that the plastic deformation is facilitated by the migration of CTBs normal to the twin boundary plane due to the glide of twinning dislocations in the twin plane. X-ray pole figure measurements show insignificant out of plane rotation as a result of 50% rolling thickness reduction. Thermal stability of nanocrystalline metals is also a concern. Free standing nanotwinned polycrystalline copper films show remarkable thermal stability after annealing at 800 degrees C. The driving force for twin growth is much lower than that for grain coarsening because the energy stored in CTBs is an order of magnitude lower than that of GBs. As a result, the average twin spacing stays below 20 nm after annealing. Such high thermal stability of nanotwins leads to the retention of hardness of 2.2 GPa. Low energy twin boundary may provide a unique way to achieve both high strength and high temperature thermal stability in certain metallic materials.
918

The Packaging Process of Metal Microcap under Room Temperature Status and Its Shear Stress-Strain Relationship Analysis

Yang, Cong-Ming 25 August 2004 (has links)
A novel room temperature bonding method is used to package the micro-component. The bonding method utilizes metal microcap to package the micro-component under room temperature status, which not only can provide micro-component mechanical support also can prevent micro-component from contamination. The bonding condition under room temperature is the most conventional method can not achieve, which characteristic is the most significant effect factor to drive the wafer-level packaging process to improve in today. Utilizing ASTM standard, which was used as a macroscopic standard to evaluate and analyze the bonding shear strength relationship between the ASTM standard specimen and the metal microcap. The carrier wafer has been oxidized before photolithography process; the diameter of cavity and the contact area between the metal microcap and glass substrate were controlled by the photomask design and the accuracy of the photoresist exposure. The passivation treatment was developed to separate the microcap from the carrier wafer more easily. In this thesis, the metal microcap was fabricated by using electroforming process, which can control the thickness of metal microcap. The advantages of microcap are superior to the thin film poly-silicon made by the surface micromachining technique on the quality and mechanical properties. A glass is used as substrate of the metal microcap, and its transparent characteristic is a feature how we perform UV curing process. The adhesive can be cured under room temperature and the results exhibit the adhesive has excellent bonding strength. SEM is used to analyze the passivation result, the increasing rate of electroforming thickness. The shear stress-strain relationship between the metal microcap and the ASTM standard specimen is also discussed and analyzed in this thesis.
919

The Applications of Atmospheric Plasma Systems on Microfluidic Chip Fabrication and Surface Modification

Lin, Yue-Feng 20 July 2005 (has links)
This paper presents new bonding and surface modification methods for plastic substrates utilizing atmospheric pressure plasma (AP plasma) treatment. Three kinds of AP plasma equipments including after-glow discharge, dielectric barrier discharge and flame type are tested and evaluated for their feasibility of microfluidic device fabrication. The experimental results show that the DBD plasma equipment is the most suitable one for microfluidic applications due to its low temperature and high treating level. Three kinds of polymenr including PMMA, PC and PDMS are used as the sample substrates for evaluating the performance of AP plasma in this study. Experimental results show that the polymer surface turns into hydrophilic after AP plasma treatment. Fourier Transform Infrared Spectroscopy (FTIR) inspection indicates that a new peak corresponding to -C-OH functional group is generated at the wavenumber of 1040 cm-1 after AP plasma treatment. X-ray photoelectron spectrum investigation also shows that the O/C (atom ratio) is 3.5-fold incensement in compare with the bare sample. SEM and AFM observations are utilized to evaluate the surface morphology change after plasma treatment. The measured surface roughness is at the level of several nanometers which is acceptable for most microfluidic applications. We develop two simple and high strength bonding methods for sealing microfluidic deivices in this study. The bonding process can be achieved in 6 minutes and bonding strength of 1.69 MPa and 3.81 MPa can be obtained using direct plasma bonding and ethyl alcohol assisted bonding, respectively. The bonding strength obtained using ethyl alcohol assisted bonding technique reported in this study is the highest one that ever been reported. The feasibility of AP plasma treatment for sealing microfluidic chips are confirmed by three examples including two novel passive microfluidic mixers and one cross-type micro CE chip. Experimental result shows that the mixing performance of the micromixer can reach up to 90% at an operation condition of a low Reynolds number of 4. In addition, micro CE chip sealed with the proposed method can successfully inject and separate dye sample with a long-term stability upto 30 minutes. Separation of 100 bp standard DNA sample of 100 bp to 3000 is also successfully demonstrated with high separation efficiency. It is the author¡¦s firm believes that the proposed bonding method will give substaintial impact on the fabrication of microfluidic device in the future.
920

Fabrication of High Strength Al-Cu-Ti Alloys by Friction Stir Processing

Lo, Chu-Chun 22 July 2005 (has links)
None

Page generated in 0.0442 seconds