• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 37
  • 33
  • 15
  • 9
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 262
  • 65
  • 49
  • 37
  • 34
  • 33
  • 29
  • 29
  • 27
  • 27
  • 20
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Trafego intracelular de vetores não-virais = desenvolvimento de proteínas de fusão para transporte de DNA plasmidial através da interação com proteínas motoras = Intracelullar traffic of non-viral vectors: development of recombinant fusion proteins to mediate plasmidial DNA transport by interaction with motor proteins / Intracelullar traffic of non-viral vectors : development of recombinant fusion proteins to mediate plasmidial DNA transport by interaction with motor proteins

Toledo, Marcelo Augusto Szymanski de, 1987- 24 August 2018 (has links)
Orientadores: Adriano Rodrigues Azzoni, Anete Pereira de Souza / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-24T06:15:51Z (GMT). No. of bitstreams: 1 Toledo_MarceloAugustoSzymanskide_D.pdf: 15660446 bytes, checksum: 8e64c5b4455cf458c2eb0d9b8e030e70 (MD5) Previous issue date: 2013 / Resumo: Apesar de seguros e simples de produzir, o uso de vetores não virais como o DNA plasmidial (DNAp) em estudos de terapia gênica e vacinação por DNA tem sido limitado pela baixa eficiência quando comparados aos vetores virais. Essa limitação provém principalmente da reduzida capacidade de superar as barreiras físicas, enzimáticas e difusionais encontradas durante o tráfego intracelular para o interior do núcleo das células alvo. Dentro deste contexto, o presente trabalho demonstra a utilização de cadeias leves modificadas de Dineína (Lc8 e Rp3) como vetores não-virais de entrega gênica. A escolha de cadeias leves de Dineína justifica-se pela possibilidade de utilizar o transporte retrógrado celular mediado por complexos motores de Dineína para facilitar o tráfego de material genético exógeno através do citoplasma em direção à periferia nuclear. Através da adição de pequenos domínios peptídicos, ricos em aminoácidos polares positivos (arginina e lisina), ao N-terminal de cadeias leves de Dineína foi possível conferir a estas proteínas a habilidade de interagir com material genético condensando-o em partículas. Ensaios de transfecção demonstraram que tais partículas apresentam elevada eficiência de entrega do material genético exógeno ao núcleo de células HeLa, eficiência esta superior àquela apresentada pelo peptídeo protamina, amplamente estudado como vetor não-viral de entrega gênica. A formação de complexos ternários utilizando-se DNA plasmidial, cadeias leves de Dineína modificadas e lipídios catiônicos apresentou eficiência de entrega superior àquelas apresentadas na ausência do lipídio. Adicionalmente, complexos de entrega formados apenas com DNA plasmidial e cadeias leves de Dineína modificadas apresentaram baixo efeito citotóxico em células HeLa, característica esta de grande relevância uma vez que a toxicidade dos vetores de entrega gênica atua como importante fator limitante em sua aplicação clínica. O mecanismo envolvido no processo de entrega gênica mediado por cadeias leves de Dineína modificadas também foi estudado, podendo ser observado que (1) a entrada dos complexos de entrega na célula é altamente dependente do processo de endocitose, (2) a eficiência de entrega observada depende da rede de microtúbulos e (3) parte significativa dos complexos de entrega é degradada na via de endossoma/lisossomo celular. Os vetores não-virais de entrega gênica descritos no presente estudo associam elevada eficiência de transfecção, baixa toxicidade celular e relativo baixo custo de produção, uma vez que as cadeias leves de Dineína recombinantes são produzidas em sistema heterólogo utilizando-se Escherichia coli. Ressalta-se ainda a possibilidade de adição de novos domínios peptídicos às cadeias leves de Dineína modificadas, agregando novas funções/capacidades que poderiam resultar em maior eficiência de entrega gênica através da otimização dos processos de internalização celular ou escape endossomal. A abordagem de se utilizar a via de transporte retrógrado celular para o desenvolvimento de vetores não-virais para entrega gênica é pouco explorada pela comunidade científica e o presente estudo apresenta-se entre os poucos da área, esperando assim contribuir para o desenvolvimento de vetores não-virais mais eficientes e seguros / Abstract: The use of non viral vectors such as plasmidial DNA (pDNA) in gene therapy and DNA vaccination protocols has been limited due to its low transfection efficiency when compared to viral vectors. This limitation occurs mainly due to the physical, enzymatic and diffusion barriers faced during the transport of the genetic material to the nucleus of target eukaryotic cells. Regarding this subject, the present work demonstrates the feasibility of using modified Dynein light chains (Lc8 and Rp3) as non viral vectors for gene delivery. The use of Dynein light chains relies on the possibility to exploit the Dynein based cellular retrograde transport in order to improve the exogenous genetic material transport across the citosol towards the nuclear periphery. By adding small peptide domains, based in positively charged aminoacids (arginine and lysine) to the N-terminal of Dynein light chains, the resulting recombinant proteins were able to interact and condense genetic material into delivery particles. Transfection assays demonstrated that these particles are highly efficient to delivery plasmidial DNA to nucleus of HeLa cells when compared to the transfection efficiency presented by protamine, a well characterized non viral vector peptide. Ternary complexes formed by modified Dynein light chains, pDNA and a cationic lipid showed even higher transfection efficiency. Additionally, the light chain based non viral delivery vectors presented low citotoxic effect to HeLa cells, a valuable feature as toxicity is regarded as one of the main concerns on delivery vectors development. The mechanism by which the modified Dynein light chain based vectors mediates gene delivery was also investigated and we could observe that (1) the internalization process deeply relies on endocytosis, (2) it depends on the microtubule network and (3) a significant fraction of the delivery complexes are trapped and degraded in the endocytic pathway. The non viral vectors developed in the present study combine high transfection efficiency, low toxicity and relative low production cost, as all modified proteins were produced in Escherichia coli prokaryotic host. Its noteworthy that additional peptide domains can be further associated to the delivery vectors described providing it with new abilities such as higher internalization or endosomal escape capacity. The approach to use the cellular retrograde transport in order to develop non viral vectors is poorly exploited by the scientific community and the present study stands among few in the field hopefully contributing to the development of more efficient and safer non viral vectors for gene delivery / Doutorado / Genetica de Microorganismos / Doutor em Genetica e Biologia Molecular
142

Avaliação da factibilidade da terapia gênica com vetores não virais na sepse experimental murina / Evaluation of the feasibility of gene transfer with non-viral vectors in a murine model of sepsis

Faiotto, Vanessa Boury, 1989- 26 August 2018 (has links)
Orientador: Erich Vinícius de Paula / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-26T18:53:53Z (GMT). No. of bitstreams: 1 Faiotto_VanessaBoury_M.pdf: 2777980 bytes, checksum: 26068f6f5813665c531b744d7a8c8f60 (MD5) Previous issue date: 2015 / Resumo: A sepse representa uma condição potencialmente fatal em que a resposta do organismo a uma infecção resulta em lesão em seus próprios tecidos. A terapia gênica (TG) consiste na modificação do repertório de células somáticas com fins terapêuticos, substituindo genes defeituosos que causam doenças. Na sepse, vetores não virais podem representar uma estratégia excelente para a transferência do gene terapêutico, uma vez que não provoca resposta imune significativa e são expressos apenas transitoriamente. Além disso, a sua produção é mais simples. Métodos: O estudo foi dividido em três etapas. Em primeiro lugar, dois genes repórter (lacZ e F9) foram testados em dois modelos experimentais de sepse (endotoxemia e ligadura e punção cecal, CLP) para confirmar a viabilidade da transferência gênica no contexto da sepse. A expressão foi avaliada por métodos qualitativos (histoquímica) e quantitativos (avaliação funcional; métodos coagulométricos). Em seguida avaliou-se a eficácia terapêutica da transferência do gene de sFlt-1, um antagonista de VEGF natural, no modelo de endotoxemia. A expressão foi avaliada por ELISA, e a eficácia foi avaliada através de uma curva de sobrevida. Os camundongos foram tratados com o plasmídeo DNA (pDNA) contendo o cDNA do gene Flt1 (tratamento) lacZ (controle), 6 horas após o desafio com LPS. A propósito, sFlt-1 foi capaz de proteger da sepse experimental murina em outros estudos, devido a sua propriedade estabilizadora da barreira endotelial (BE). Na última etapa, avaliamos os níveis séricos de quatro proteínas envolvidas na modulação da integridade BE, utilizando amostras de soro de indivíduos diagnosticados com sepse grave e choque séptico (n = 53), através de um kit Multiplex comercial. Resultados: No primeiro passo, a transferência gênica por vetores não virais foi demonstrada no modelo de endotoxemia, pois tanto a expressão de ?-galactosidase quanto de F IX mostraram-se aumentadas nos animais tratados neste modelo. A expressão não foi confirmada no modelo CLP, embora o número reduzido de animais por grupo não permita uma conclusão definitiva sobre o assunto. Em relação à segunda etapa, apenas 4/14 animais tratados apresentaram níveis detectáveis de sFlt-1 por Elisa. Além disso, não houve diferença na sobrevida entre os animais tratados e controles. Juntos, estes resultados confirmam que a transferência gênica com vetores não virais é possível no contexto de uma inflamação grave, mas apresenta baixa eficiência e previsibilidade. Por fim, observamos diferenças significativas nos níveis séricos de endoglina (maior expressão) e HB-EGF (menor expressão) em pacientes com choque séptico, em comparação ao grupo controle. Os níveis de BMP-9 e FGF-2 não foram significativamente diferentes no choque séptico. Conclusões: Nosso estudo nos permite concluir que, apesar de factível, a utilização de vetores não-virais não parece representar uma estratégia terapêutica eficaz na sepse experimental. Maiores estudos são necessários para validar o uso de endoglina e HB-EGF como biomarcadores de sepse grave / Abstract: Sepsis represents a potentially fatal condition that occurs when the body's response to infection results in injury to its own tissues. Gene therapy (GT) consists in modification of the repertory of somatic cells with therapeutic purposes, replacing defective genes that cause diseases. In sepsis, non-viral vectors, could represent an excellent strategy for therapeutic gene transfer, since they do not elicit intense immune responses in the individual and are expressed only transiently. Besides, their production is easy and inexpensive. Methods: The study was divided in 3 steps. First, two reporter genes (lacZ and F9) were tested in two experimental models of sepsis (endotoxemia and cecal ligation and puncture, CLP) to confirm the feasibility of gene transfer in the context of sepsis. We assessed expression by qualitative (histochemistry) and quantitative methods (functional evaluation, through coagulometric methods). Next we evaluated the efficacy of the therapeutic gene transfer of sFlt-1, a natural VEGF antagonist, in the endotoxemia model. Expression was evaluated by ELISA, and efficacy was evaluated by a survival curve. Mice were treated with pDNA containing the Flt1 (treatment) or lacZ (control) cDNA, 6 hours after challenge with LPS. Of note, sFlt-1 has been previously shown to protect from experimental sepsis due to its endothelial barrier (EB) stabilizing properties. In the last step, we evaluated serum levels of 4 proteins involved in the modulation of EB integrity, using serum samples of subjects diagnosed with severe sepsis and septic shock (n=53), through a commercial Multiplex kit. Results: In the first step, we could confirm the expression of both reporter genes by non-viral vectors in the endotoxemia model. Of note, expression of ?-galactosidase showed a notable increase when compared with control group. Similarly, we noted increased expression of factor IX in the mice which were submitted to gene transfer with pDNA, when compared with the controls that received the lacZ pDNA (111,4 ± 16,10 vs 64,73 ± 12,34; p<0,001) in the endotoxemia model, and similar result in the group without sepsis induction by endotoxemia (163,4± 73,46 vs 79,88 ± 9,39; p=0,0006). Expression was not confirmed in the CLP model, although the limited number of animals per group does not allow a definite conclusion on this matter. In relation to the second step, only 4/14 treated animals presented detectable levels of sFlt-1 by Elisa. In addition, no difference could be observed in the survival between treated and control animals. Together, these results confirme that gene transfer with non-viral vectors is feasible in the context of severe inflammation, but with a low efficiency and predictability. Finally, we demonstrated significant differences in serum levels of endoglin (higher expression) and HB-EGF (lower expression) in patients with septic shock, compared to controls. BMP-9 and FGF-2 levels were not significantly different in septic shock. Conclusions: Our study allows us to conclude that although feasible, the use of non-viral vectors does not seem to represent an effective therapeutic strategy in experimental sepsis. Larger studies are needed to validate the use of endoglin and HB-EGF as biomarkers of severe sepsis / Mestrado / Clinica Medica / Mestra em Ciências
143

Transientní transfekce bezsérové buněčné kultury pomocí polyethyleniminů / Transient transfection of a serum free cell culture using polyethyleneimines

Čutová, Michaela January 2010 (has links)
Master’s thesis deals with the transient transfection of the serum free animal cell culture using polyethyleneimines. In the theoretical part formation of recombinant DNA molecules, used expresion vectores, used DNA transfer and detection of recombinant proteins are discussed. The experimental part deals with efficiency of the polyethylenimine mediated transient transfection under various experimental conditions. 293HEK/EBNA cell line was chosen as an experimental model. First the most effective plasmide - pCEP4/SEAP was selected. Then three transfection methodes were tested: Muller (2005), Durocher et al. (2007) and Backliwal et al. (2008). The highest recombinant protein expresion was reached using the method of Backliwal et al. (2008).
144

Monitorování úspěšnosti transfekce buněčné linie 293 HEK / Monitoring the success of transfection of cell line 293 HEK

Dvořák, Tomáš January 2011 (has links)
Diploma thesis is based on monitoring the succes of transfection of cell linie HEK293. In theoretical part are described principles of transfection methods, cell lines, vectors and reporter genes. HEK293 cells EBNA1 were used for practical part. It was studied the difference between GFP and EGFP plasmids. As well as using various transfection reagents under different culture conditions.
145

Využití kultivačních desek pro tkáňové kultury k testování podmínek exprese rekombinantních proteinů v buněčné linii HEK293 / Application of tissue culture test plates for production of recombinant protein in HEK293 cells; determination of optimal conditions

Krzyžanková, Marcela January 2016 (has links)
Efficient production of the recombinant proteins (r-proteins) must be based on previous testing of an expression of a small amount of the r-proteins. This work focuses on optimizing the expression of the r-proteins in 12-well plates. It includes testing of an appropriate speed of shaking, production and transfection volume. It compares all the current testing vessels (it compares a 50-ml centrifugation tube to new tested plates that can substitute the unsuitable tubes). It also compares these new tested plates to production square bottles in order to compare the r-protein expression in the plates to the r-protein expression in the bottles. It monitors effects of carbon dioxide on a number of vital cells, their viability, a relative frequency of positive cells on GFP in various cultivation vessels (plates, tubes, bottles), and pH of HEK 293 cellular cultivation during the 4-day cultivation process as well. On the basis of the results and statistical processing of the results, we have set the optimal agitation speed of 230 rpm for the 12-well plates. We have also set the appropriate production and transfection volume of 2 and 0.5 ml for the 12-well plates. In order to evaluate variables and compare cultivations in all the vessels, the tubes could be substituted by the plates. There is a statistically significant impact of carbon dioxide on the number of cells, their variability, relative frequency of cells (positive on GFP) and pH of the cellular HEK 293 cultivation in the cultivation vessels. There is the strongest r-protein expression in carbon dioxide conditions. The results of this work allow to employ the 12-well plates when we aim to test the expression of the r-proteins in a small amount and in carbon dioxide conditions. On the basis of the findings, the expression of the r-proteins in the 12-well plates and carbon dioxide conditions can substitute the expression of the r-proteins in the production bottle and in carbon dioxide free conditions.
146

Příprava a charakterizace syntetické mRNA kódující pankreatické transkripční faktory / Preparation and characterization of synthetic mRNA coding for pancreatic transcription factors

Loukotová, Šárka January 2015 (has links)
Diabetes mellitus type I is severe autoimmune disease which is caused by destruction of insulin-producing β-cells in pancreas. Diabetic patients are dependent on external usage of insulin during their whole life. Nowadays the only treatment of diabetes type I is transplantation of entire pancreas or isolated Langerhans islets. Due to the fact that this kind of treatment is very demanding and limited availability of suitable donors, the researchers are intensively working on development of new alternative ways how to produce the insulin-producing cells. One of the possible approaches on producing insulin-positive cells is transdifferentiation of pancreatic exocrine cells via transcription factors. In this diploma thesis, the transdifferentiation of exocrine cells AR42J was carried out with in vitro synthesized mRNA encoding transcription factors Pdx1, Ngn3 and MafA. The primary mRNA structure was optimized in order to prepare highly stable mRNA which is correctly translated into the protein. The main stabilizing elements in mRNA structure include 3' and 5' untranslated region derived from highly stable β-globin mRNA. In order to verify the function of synthetic mRNA the immunofluorescence staining of transcription factors has been investigated. Synthetic mRNAs encoding transcription factors Pdx1,...
147

Calcium dependent protein kinase 1 in Cryptosporidium parvum (CpCDPK1): attempts to produce knockout parasites and functional studies

Zheng, Wanpeng 16 March 2020 (has links)
Introduction: Cryptosporidium parvum is a protozoan parasite that causes diarrhoea in many host species worldwide. CpCDPK1 appears to be essential for invasion and a promising drug target. Aim of the study: The aims of this study were to expand the knowledge of CpCDPK1. To achieve that, attempts were made to inhibit this gene by BKI-1294 in vitro and generate CpCDPK1 KO C. parvum. To maintain the genetically modified parasites, I studied the suitability of infection and propagation in a new animal model RAGgc × IFN-gamma mouse and in vitro model COLO - 680 N cell line. Animals, materials and methods: 4×106 freshly excysted C. parvum sporozoites were seeded into transfected GFP-MDBK cultures at the confluency of 70 – 80 % and simultaneously exposed to 500 nM of BKI-1294. IFA was applied to observe the invasion and host cell actin accumulation. Guide RNA (gRNA) for CRISPR-mediated transfection was designed and the Nluc-neoR repair cassette was flanked with 50 bp long 5’- and 3’UTR of CpCDPK1 by PCR. Transfection was performed by octaarginine transportation and compared to electroporation. COLO - 680 N cells with the confluency of 70 – 80% were infected with 4×106 non-transfected and transfected sporozoites of C. parvum. To establish a laboratory animal model for propagation of C. parvum and drug screening RAGgc × IFN-gamma mice were infected with 500 (G2), 1000 (G3) and 5000 (G4) of oocysts. BALB/c WT mice were inoculated with 5000 (G1) oocysts as control. Faeces were sampled for C. parvum DNA extraction. Real time PCR was applied to calculate the oocyst yield. Results: In the presence of 500 nM BKI-1294, parasite-induced host cell actin accumulation was not observed at 24 and 48 h after inoculation in vitro pointing at altered infectivity of CDPK inhibited sporozoites. Extracellular noninvasive sporozoites were found at 24 h p.i., only one meront was observed in a host cell at 72 h p.i. CRISPR-mediated gene editing was applied to C. parvum to knock out CDPK1. Transfected C. parvum were found in COLO-680 N cells through 6 passages. However, no newly generated oocysts were harvested. RAGgc × IFN-gamma mice were tested suitable as an animal model for C. parvum infection studies and oocyst propagation. These crossbred mice are very sensitive to infection at doses as low as 500 oocysts. They displayed emaciation, rough fur and trembling. The survival percentage was 71.4 % (G2), 85.7 % (G3), 57.1 % (G4) and 100 % (G1) at the end of study. Oocyst yield of 108 OPG was calculated in the crossbred mice whereas only 104 OPG were counted in Balb/C mice. Yields did not differ significantly (P > 0.05) in crossbred mice infected with different oocysts doses. Conclusions: 1.The function of CpCDPK1 is obviously important to the invasion process including attachment and utilization of host cell actin to form PV. This assumption was confirmed by CDPK inhibition and genetic KO. However, methods that increase the transfection efficiency are needed to enhance the generation of KO C. parvum. 2. The transfection method mediated by octargninine is superior to electroporation in consideration of DNA consumption and requirement of device. 3. Due to the low required infection dose and clinical manifestation RAGgc × IFN-gamma mice appear very well suited to serve as an in vivo laboratory model of C. parvum infection and for propagation of particularly transgenic C. parvum strains. 4. COLO – 680 N cells appear suited to be an in vitro model for C. parvum infection and transfection study, however, not qualified for propagation.:Contents 1. Introduction 1 2. Literature Review 2 2.1 Biology 2 2.1.1 Systematics 2 2.1.2 Life cycle 2 2.1.3 Tenacity of oocysts 4 2.1.4 Excystation of oocysts and invasion of host cells 4 2.1.5 Formation of the PV 6 2.1.6 Nutrient supply by the host 7 2.2 Epidemiology 8 2.2.1 Human Cryptosporidiosis 8 2.2.2 Animal Cryptosporidiosis 9 2.3 Detection and Diagnosis 11 2.4 Treatment options 12 2.5 Hygiene 14 2.6 Vaccine 16 2.7 In vitro and vivo Models 16 2.8 Structure and function of Calcium-dependent protein kinases 18 3. Animals, materials and methods 21 3.1 Animals and materials 21 3.1.3 Mice 21 3.1.4 Cells 21 3.1.5 C. parvum oocysts 21 3.1.6 Reagents 21 3.1.7 Plasmids and oligonucleotides 23 3.1.7.1 Plasmids 23 3.1.7.2 Primers and probes 24 3.1.8 Kits 25 3.1.9 Instruments and software 25 3.2 Methods 26 3.2.1 Preparation of reagents 26 3.2.2 C. parvum oocysts maintaince 27 3.2.3 PCR 27 3.2.3.1 Amplification of NdeI and AatII flanked 5’CDPK1 27 3.2.3.2 Annealing of gRNA 27 3.2.3.3 Amplification of repair cassette via Touchdown PCR (TD-PCR) 28 3.2.3.4 Colony PCR 29 3.2.3.5 Real-time PCR for C. parvum hsp70 30 3.2.4 Restriction enzyme digestion 31 3.2.4.1 Restriction enzyme digestion of pA - pD 31 3.2.4.2 Enzyme digestion and dephosphorylation of p185 31 3.2.5 Agarose gel electrophoresis 32 3.2.6 Gel purification 32 3.2.7 Ligation 33 3.2.7.1 Ligation of CDPK1 KO plasmids 33 3.2.7.2 Ligation of gRNA and p185 33 3.2.8 Transformation 34 3.2.9 Plasmid extraction 34 3.2.10 C. parvum oocysts excystation 35 3.2.11 C. parvum infection 35 3.2.11.1 In vitro infection 35 3.2.11.2 C. parvum infection in mice 36 3.2.12 Transfection 36 3.2.12.1 Electroporation for MDBK transfection 36 3.2.12.2 Electroporation for C. parvum transfection 37 3.2.12.3 CpCDPK1 knock out through Cell penetrating peptide (CPP) - octaarginine mediated transfection 38 3.2.13 Geneticin screening for GFP-MDBK cells 39 3.2.14 Indirect immunofluorescent assay (IFA) 39 3.2.15 Animal feeding and body conditioning score (BCS) monitoring 40 3.2.16 Faecal sample collection 43 3.2.17 DNA extraction and oocysts per gram (OPG) determination of fecal samples 43 3.2.18 Statistical analysis 44 4. Results 45 4.1 CDPK1 knockout by REMI 45 4.1.1 Construction of Knockout plasmid 45 4.1.2 Electroporation protocol and in vitro analysis 49 4.2 CDPK1 knockout by CRISPR/Cas 9-mediated gene editing 50 4.2.1 Constructing CRISPR/Cas9_CpCDPK1_7 plasmid 51 4.2.2 Amplification of CDPK1 flanked repair cassette 52 4.2.3 Knockout CDPK1 via CRISPR/cas 9 53 4.2.3.1 Electroporation and in vitro analysis 53 4.2.3.2 CPP transfection and in vitro analysis 55 4.2.3.3 Genetic assay of transfection 57 4.3 In vitro and in vivo model for infection and propagation 58 4.3.1 In vitro model - C. parvum cultivation in COLO - 680 N cells 58 4.3.2 In vivo model Infection pattern of C. parvum in RAGgc x IFN-g KO mice 60 4.3.2.1 Clinical symptoms 60 4.3.2.2 Oocysts excretion 63 4.4 In vitro inhibition of CDPK1 66 4.4.1 Generating bAct-GFP-MDBK cells 67 4.4.2 Influence of CDPK1 inhibition on infection 70 5. Discussion 73 5.1 Sub-cloning 73 5.2 Inhibition of CpCDPK1 delays the host cell actin accumulation in vitro 73 5.3 RAGgc x IFN-gamma KO mice for C. parvum propagation 76 5.4 CpCDPK1 knockout by CRISPR/cas 9 79 5.5 COLO-680 N cells are not suited to propagate C. parvum in vitro 82 6. Summary 85 7. Zusammenfassung 87 8. References 89
148

Struktura a dynamika myších inhibičních receptorů podobných lektinům C-typu / Structure and dynamics of mouse C-type lectin-like receptors.

Wallenfels, Lucie January 2019 (has links)
Natural killer (NK) cells represent indispensable part of the innate immunity as they are capable of promptly identifying virally infected or tumor cells and participating in the regulation of adaptive immune responses. These functions are ensured by the interplay between NK receptors, creating a complex regulatory system. Solving the receptors' structure may contribute to an overall understanding of NK cell biology. Presented thesis describes an elucidation of the structure of the inhibitory C-type lectin-like receptor (CTLR) Nkrp1b with an emphasis toward structural features (stalk, loop and oligomerization state) which might affect conformation or interactions of this receptor. The interaction of Nkrp1b with its ligand, Clr-b protein, is immunologically significant as it regulates NK cells' activity independently and monitors changes that are not visible to cytotoxic T lymphocytes. To study individual structural aspects of Nkrp1b, two protein variants were recombinantly prepared in bacterial expression system: entire ectodomain and ligand-binding domain lacking the stalk. Using a range of mass spectrometric techniques in combination with homology modeling and molecular dynamics, we proposed the Nkrp1b structure including its monomeric and dimeric arrangements. In addition, the oligomerization...
149

Skeletal Muscle Stem Cells

Kao, Grace W., Lamb, Elizabeth K., Kao, Race L. 18 July 2013 (has links)
Skeletal muscle satellite cells (myoblasts) are the primary stem cells of skeletal muscle which contribute to growth, maintenance, and repair of the muscles. Satellite cells are the first stem cells used for cellular cardiomyoplasty more than 20 years ago. The isolation, culture, labeling, and identification of satellite cells are described in detail here. The implantation and outcomes of cellular cardiomyoplasty using satellite cells have been summarized in the previous chapter (Chapter 1).
150

Skeletal Muscle Stem Cells

Kao, Grace W., Lamb, Elizabeth K., Kao, Race L. 18 July 2013 (has links)
Skeletal muscle satellite cells (myoblasts) are the primary stem cells of skeletal muscle which contribute to growth, maintenance, and repair of the muscles. Satellite cells are the first stem cells used for cellular cardiomyoplasty more than 20 years ago. The isolation, culture, labeling, and identification of satellite cells are described in detail here. The implantation and outcomes of cellular cardiomyoplasty using satellite cells have been summarized in the previous chapter (Chapter 1).

Page generated in 0.1595 seconds