Spelling suggestions: "subject:"@diss""
251 |
Electrodeposition of iron-cobalt alloys from a dibasic ammonium citrate stabilized plating solutionCrozier, Brendan Matthew 11 1900 (has links)
Iron-cobalt alloys have been extensively studied as potential hard disk drive write head materials due to their potentially high saturation flux densities (~2.4T), low coercivities and ease of deposition. Iron-cobalt plating solutions have, however, been shown to have stability issues, necessitating that they be used at low pH or that a stabilizing agent be added to the solution.
The purpose of this thesis is to evaluate the stability of a dibasic ammonium citrate plating solution and to characterize the deposits which result from its use.
The plating solutions are found to be less stable than previously claimed. The solutions are oxidized by dissolved oxygen, which leads to a valence change in the iron ions and eventually the formation of iron oxide/hydroxide precipitates. These effects are exacerbated by heating or the application of a voltage across the solution. Deposits plated from the solution are fine grained (<40nm) and compact through their thickness. While normally deposited as the equilibrium BCC phase, metastable phases are deposited at elevated temperatures, high pH or in the
absence of a stabilizing agent. A metastable phase which is isomorphous to α-Mn is deposited at elevated temperatures. This phase transforms to the BCC phase when annealed at >174ºC and is highly textured. Its presence is detrimental to deposit coercivity. / Materials Engineering
|
252 |
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive EnclosuresSong, H., Damodaran, Murali, Ng, Quock Y. 01 1900 (has links)
The airflow field and particle trajectories inside hard disk drive (HDD) are investigated in this study using commercial software Fluent and Gambit. Three-dimensional grids inside the HDD configuration are built using Gambit taking into account all the components and their geometric details. The airflow field inside HDD is simulated using three incompressible Navier-Stokes equations for various disk rotational speeds. The effects of using the various turbulence models inside the Fluent software such as the standard k - ε , RNG k - ε and Reynolds Stress Method on the computed airflow characteristics are also assessed. Steady flow fields and the effects of rotational speeds are assessed. Based on the computed steady airflow patterns, particle trajectories are computed using routines available in Fluent as well as special particle trajectory functions defined by the user via the user-defined functions. Particles of different sizes and materials are injected at various locations in the computed flow field and the corresponding particle trajectories are studied. Based on the investigation, the trajectory tends to be different according to sizes and materials. The present work forms a basis for further investigation of heat transfer processes inside the HDD to address thermal management issues and also the computation of unsteady flow fields in the HDD due to the movement of the actuator arm during data storage and retrieval / Singapore-MIT Alliance (SMA)
|
253 |
Film condensation on curvilinear fin: Preparation of SAFIR and EMERALD experiments aboard International Space StationGlushchuk, Andrey 29 October 2010 (has links)
In 21 century finned surfaces are used in almost all condensers to enhance their heat transfer capabilities. A lot of different models are presented in the literature: on horizontal and vertical finned tubes, inside finned tubes. The validation method of the theoretical models is based on comparison between measurement of average heat transfer coefficient and one calculated by the model. But in this case it is impossible to validate all approaches made in the theory.
The presented work aims to understand the real relation between assumptions made in the theory and flow of the condensate film along a fin. Therefore a comprehensive investigation of the film condensation phenomena on curvilinear surfaces has been done.
This investigation has been done in the framework of the preparation of “SAFIR” and “EMERALD” space experiments aboard International Space Station. A special attention has been given to clarify some technical and technological problems that could eventually have a positive feedback for industrial applications.
The model of the fin shape optimization has been developed. It takes into account surface tension forces and finite heat conductivity of the fin material. Developed model allows to significantly increase the condensate outflow as compared with the case of the optimal isothermal fin shape at the finite heat transfer conductivity. Enhancement coefficient increases with fin heat conductivity decreasing.
The experimental and theoretical investigation of film condensation on a disk-shaped fin has been done under groun condition. 3D condensation model at different gravity levels has been developed. This model allows to reveal the area of dominant influence of surface tension forces. First prototype of experimental cell for the space experiments has been developed and tested. The temperature distribution along the curvilinear fin surface has been measured. The measurements of the film thickness at the fin top shows that the film thickness does not equal to zero as was assumed in some previous theoretical models. Developed model is in a good agreement with experimental results. In the ground set-up the measurement techniques as in future space experiments were realized: local temperature measurement of the fin surface, measurement of non-condensable gas mole fraction, optical system for local film thickness measurement and system of average heat transfer coefficient measurement. Experimental results approve the usefulness of these systems.
Optical system based on schlieren technique for film surface deformation has been investigated and developed. This system was used for the investigation of shear driven liquid film on the mirror like substrate under microgravity condition. The microgravity condition was simulated during ESA Parabolic Flight Campaign of October-November 2009. The experimental results show the high capabilities of this system.
In the framework of the space experiments preparation the analysis of appropriate liquid has been done. Three candidates have been compared: Water, Ethyl alcohol and FC-72. Third liquid has been chosen as applicable liquid for the “SAFIR” and “EMERALD” experiments. The optimal fin shapes and film thickness distribution have been calculated for the working liquid. Using obtained results requirements for space experiments have been prepared.
|
254 |
A Scalable Partial-Order Data Structure for Distributed-System ObservationWard, Paul January 2001 (has links)
Distributed-system observation is foundational to understanding and controlling distributed computations. Existing tools for distributed-system observation are constrained in the size of computation that they can observe by three fundamental problems. They lack scalable information collection, scalable data-structures for storing and querying the information collected, and scalable information-abstraction schemes. This dissertation addresses the second of these problems. Two core problems were identified in providing a scalable data structure. First, in spite of the existence of several distributed-system-observation tools, the requirements of such a structure were not well-defined. Rather, current tools appear to be built on the basis of events as the core data structure. Events were assigned logical timestamps, typically Fidge/Mattern, as needed to capture causality. Algorithms then took advantage of additional properties of these timestamps that are not explicit in the formal semantics. This dissertation defines the data-structure interface precisely, and goes some way toward reworking algorithms in terms of that interface. The second problem is providing an efficient, scalable implementation for the defined data structure. The key issue in solving this is to provide a scalable precedence-test operation. Current tools use the Fidge/Mattern timestamp for this. While this provides a constant-time test, it requires space per event equal to the number of processes. As the number of processes increases, the space consumption becomes sufficient to affect the precedence-test time because of caching effects. It also becomes problematic when the timestamps need to be copied between processes or written to a file. Worse, existing theory suggested that the space-consumption requirement of Fidge/Mattern timestamps was optimal. In this dissertation we present two alternate timestamp algorithms that require substantially less space than does the Fidge/Mattern algorithm.
|
255 |
A Scalable Partial-Order Data Structure for Distributed-System ObservationWard, Paul January 2001 (has links)
Distributed-system observation is foundational to understanding and controlling distributed computations. Existing tools for distributed-system observation are constrained in the size of computation that they can observe by three fundamental problems. They lack scalable information collection, scalable data-structures for storing and querying the information collected, and scalable information-abstraction schemes. This dissertation addresses the second of these problems. Two core problems were identified in providing a scalable data structure. First, in spite of the existence of several distributed-system-observation tools, the requirements of such a structure were not well-defined. Rather, current tools appear to be built on the basis of events as the core data structure. Events were assigned logical timestamps, typically Fidge/Mattern, as needed to capture causality. Algorithms then took advantage of additional properties of these timestamps that are not explicit in the formal semantics. This dissertation defines the data-structure interface precisely, and goes some way toward reworking algorithms in terms of that interface. The second problem is providing an efficient, scalable implementation for the defined data structure. The key issue in solving this is to provide a scalable precedence-test operation. Current tools use the Fidge/Mattern timestamp for this. While this provides a constant-time test, it requires space per event equal to the number of processes. As the number of processes increases, the space consumption becomes sufficient to affect the precedence-test time because of caching effects. It also becomes problematic when the timestamps need to be copied between processes or written to a file. Worse, existing theory suggested that the space-consumption requirement of Fidge/Mattern timestamps was optimal. In this dissertation we present two alternate timestamp algorithms that require substantially less space than does the Fidge/Mattern algorithm.
|
256 |
Shortest Path Queries in Very Large Spatial DatabasesZhang, Ning January 2001 (has links)
Finding the shortest paths in a graph has been studied for a long time, and there are many main memory based algorithms dealing with this problem. Among these, Dijkstra's shortest path algorithm is one of the most commonly used efficient algorithms to the non-negative graphs. Even more efficient algorithms have been developed recently for graphs with particular properties such as the weights of edges fall into a range of integer. All of the mentioned algorithms require the graph totally reside in the main memory. Howevery, for very large graphs, such as the digital maps managed by Geographic Information Systems (GIS), the requirement cannot be satisfied in most cases, so the algorithms mentioned above are not appropriate. My objective in this thesis is to design and evaluate the performance of external memory (disk-based) shortest path algorithms and data structures to solve the shortest path problem in very large digital maps. In particular the following questions are studied:What have other researchers done on the shortest path queries in very large digital maps?What could be improved on the previous works? How efficient are our new shortest paths algorithms on the digital maps, and what factors affect the efficiency? What can be done based on the algorithm? In this thesis, we give a disk-based Dijkstra's-like algorithm to answer shortest path queries based on pre-processing information. Experiments based on our Java implementation are given to show what factors affect the running time of our algorithms.
|
257 |
Generating and Analyzing Synthetic Workloads using Iterative DistillationKurmas, Zachary Alan 14 May 2004 (has links)
The exponential growth in computing capability and use has produced a
high demand for large, high-performance storage systems.
Unfortunately, advances in storage system research have been limited
by (1) a lack of evaluation workloads, and (2) a limited understanding
of the interactions between workloads and storage systems. We have
developed a tool, the Distiller that helps address both
limitations.
Our thesis is as follows: Given a storage system and a workload for
that system, one can automatically identify a set of workload
characteristics that describes a set of synthetic workloads with the
same performance as the workload they model. These representative
synthetic workloads increase the number of available workloads with
which storage systems can be evaluated. More importantly, the
characteristics also identify those workload properties that affect
disk array performance, thereby highlighting the interactions between
workloads and storage systems.
This dissertation presents the design and evaluation of the Distiller.
Specifically, our contributions are as follows. (1) We demonstrate
that the Distiller finds synthetic workloads with at most 10% error
for six out of the eight workloads we tested. (2) We also find that
all of the potential error metrics we use to compare workload
performance have limitations. Additionally, although the internal
threshold that determines which attributes the Distiller chooses has a
small effect on the accuracy of the final synthetic workloads, it has
a large effect on the Distiller's running time. Similarly, (3) we find
that we can reduce the precision with which we measure attributes and
only moderately reduce the resulting synthetic workload's
accuracy. Finally, (4) we show how to use the information contained in
the chosen attributes to predict the performance effects of modifying
the storage system's prefetch length and stripe unit size.
|
258 |
Analysis Of Computational Modeling Techniques For Complete Rotorcraft ConfigurationsO'Brien, David Michael, Jr. 11 April 2006 (has links)
Recent increases in computing power and memory have created renewed interest in alternative grid schemes such as unstructured grids, which facilitate rapid grid generation by relaxing restrictions on grid structure. Three rotor models have been incorporated into a popular fixed-wing unstructured computational fluid dynamics (CFD) solver to increase its capability and facilitate availability to the rotorcraft community. The benefit of unstructured grid methods is demonstrated through rapid generation of high fidelity configuration models. The simplest rotor model is the steady state actuator disk approximation. By transforming the unsteady rotor problem into a steady state one, the actuator disk can provide rapid predictions of performance parameters such as lift and drag. The actuator blade and overset blade models provide a depiction of the unsteady rotor wake, but incur a larger computational cost than the actuator disk. The actuator blade model is convenient when the unsteady aerodynamic behavior needs to be investigated, but the computational cost of the overset approach is too large. The overset or chimera method allows the blades loads to be computed from first-principles and therefore provides the most accurate prediction of the rotor wake for the models investigated. The physics of the flow fields of these models for rotor/fuselage interaction are explored, along with efficiencies and limitations of each methodology.
|
259 |
Chemical Application of Silicon-Based Resonant MicrosensorByun, Albert Joonsoo 31 May 2007 (has links)
The detection of volatile organic compounds in liquid is of interest for applications in public health, workplace safety and environmental monitoring. Traditionally, water samples were taken and analyzed in the laboratory using classical laboratory instrumentation. Current trends target real-time measurements using e.g. chemical microsensors built with microfabrication technologies. Among these, mass-sensitive chemical sensors, based on cantilever beams or surface acoustic devices, have shown substantial promise in gas-phase applications. In a liquid environment, the resonant microstructures typically suffer from high damping, which negatively affects the sensor resolution. In this work, a novel disk-type resonator developed at Georgia Tech was investigated as chemical microsensor for liquid-phase applications. The micromachined resonator vibrates in a rotational in-plane mode shape, reducing damping in a liquid environment. As part of the present research, a measurement setup with a custom-made flow cell for liquid-phase chemical measurements and a coating system to locally deposit polymer sensitive films onto the resonators were developed. To improve the film adhesion on the resonator surface in liquid, physical and chemical binding techniques were developed and tested on wafer samples. Polymers such as poly(4-vinylpyrrolidone), poly(ethylene-co-propylene) and poly(styrene-co-butadiene) were deposited using the custom-designed coating system onto the disk-type resonators. Liquid-phase measurements using tetrachloroethylene as the chemical analyte were performed. The experimental results are discussed, sources of problems are identified and recommendations for future research are made.
|
260 |
Nonuniform Distribution of Molecularly Thin Lubricant Caused by Inhomogeneous Buried Layers of Discrete Track MediaFukuzawa, Kenji, 福澤, 健二, Muramatsu, Takuro, Amakawa, Hiroaki, Itoh, Shintaro, Zhang, Hedong 11 1900 (has links)
No description available.
|
Page generated in 0.0506 seconds