Spelling suggestions: "subject:"low cell"" "subject:"flow cell""
1 |
The mechanism of solid-liquid interactionsBooth, Jonathan January 1996 (has links)
No description available.
|
2 |
Interfacial processesHill, Emma January 1998 (has links)
No description available.
|
3 |
The role of peroxiredoxins as mechanosensitive antioxidants in endothelial cellsMowbray, Amy Leigh. January 2008 (has links)
Thesis (Ph.D.)--Biomedical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Hanjoong Jo; Committee Member: Ajit Yoganathan; Committee Member: Dean P. Jones; Committee Member: Kathy K. Griendling; Committee Member: W. Robert Taylor
|
4 |
Bromine complexing agents for use in vanadium bromide (V/Br) redox flow cellPoon, Grace, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
The Vanadium bromide (V/Br) flow cell employs the Br3-/Br- couple in the positive and the V(II)/V(III) couple in the negative half cell. One major issue of this flow cell is bromine gas formation in the positive half cell during charging which results from the low solubility of bromine in aqueous solutions. Bromine complexing agents previously used in the zinc-bromine fuel cell were evaluated for their applicability in V/Br flow cell electrolytes. Three quaternary ammonium bromides: N-ethyl-N-methyl-morpholinium bromide (MEM), N-ethyl-N-methyl-pyrrolidinium bromide (MEP) and Tetra-butyl ammonium bromide (TBA) were studied. It is known that aqueous bromine reacts with quaternary ammonium bromides to form an immiscible organic phase. Depending on the number of quaternary ammonium bromides used and the environmental temperature, the second phase formed will either be solid or liquid. As any solid formation would interrupt the flow cell operation, potential formation of such kind has to be eliminated. Stability tests of simulated V/Br electrolyte with added quaternary ammonium bromides were carried out at 11, 25 and 40 oC. In the absence of bromine, the addition of MEM, MEP and TBA were found to be stable in V/Br electrolytes. However, in the presence of bromine, solid formation was observed in the bromine rich organic phase when the V/Br electrolyte contained a single quaternary ammonium bromide (QBr) compound. For V/Br electrolytes with binary or ternary QBr mixtures containing TBA, the presence of bromine caused a viscous polybromide phase to form at room temperature and the release of bromine gas at higher temperature. Only a binary mixture of MEM and MEP formed a stable liquid organic phase between 11 ?? 40 oC. In this study it was found that V/Br electrolytes containing a binary QBr mixture (0.75M) of MEM and MEP gave the best combination that formed an orange oily layer in the presence of bromine without solidification between 11 ?? 40oC. Furthermore, it was found that samples of V/Br electrolytes containing a ternary QBr mixture, are less effective in bromine capturing if the total QBr concentration was less than 1 M at 40oC, where bromine gas evolution was observed. From electrochemical studies of V3+/V2+, it was found that the addition of MEM and MEP had a minimal effect on the formal potential of the V3+/V2+ couple, the V2+/V3+ transfer coefficient and the diffusion coefficient of V3+. Therefore, MEM and MEP can be added to the negative half-cell of a V/Br flow cell without major interference From linear sweep voltammetry, the kinetics of the Br-/Br3- redox couple was found to be mass transfer controlled. After the addition of MEM and MEP mixture, the exchange current density was found to decrease from 0.013 Acm-2 to 0.01 Acm-2. On the other hand the transfer coefficient before and after MEM and MEP addition was found to be 0.5 and 0.44 respectively. Since the kinetic parameters were not significantly affected by the addition of MEM and MEP mixture, they can be added to the positive half-cell of the V/Br flow cell as bromine complexing agents. The electrochemical studies of both V3+/V2+ and Br-/Br3- showed the addition of MEM and MEP has minimal interference with the redox reactions of the vanadium bromide flow cell. This thesis also investigated the effect of MEM and MEP addition on the cell performance of a lab scale V/Br flow cell using two different membranes (ChiNaf and VF11). Flow cell performance for 2 M V3.7+ + 0.19 M MEM + 0.56 M MEP electrolytes utilising ChiNaf membrane at 10 mAcm-2 produced an energy efficiency of 59%, and this decreased to 43% after 15 cycles. For the static cell utilising VF11 membrane, the addition of MEM and MEP reduced the energy efficiency from 59.7% to 43.4%. It is believed that this is caused by the mass transfer controlled Br-/Br3- couple in the complexed positive half-cell solution. Therefore, uniformity between the organic and aqueous phase is important for flow cells utilising electrolytes with MEM and MEP. Finally, the polarization resistance of a lab scale V/Br flow cell utilising ChiNaf membrane and 2 M V3.7+ electrolytes was found to be slightly higher during cell charging (3.9 cm2) than during the discharge process (3.6 cm2), which is opposed to that in the all-vanadium redox cell.
|
5 |
Bromine complexing agents for use in vanadium bromide (V/Br) redox flow cellPoon, Grace, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
The Vanadium bromide (V/Br) flow cell employs the Br3-/Br- couple in the positive and the V(II)/V(III) couple in the negative half cell. One major issue of this flow cell is bromine gas formation in the positive half cell during charging which results from the low solubility of bromine in aqueous solutions. Bromine complexing agents previously used in the zinc-bromine fuel cell were evaluated for their applicability in V/Br flow cell electrolytes. Three quaternary ammonium bromides: N-ethyl-N-methyl-morpholinium bromide (MEM), N-ethyl-N-methyl-pyrrolidinium bromide (MEP) and Tetra-butyl ammonium bromide (TBA) were studied. It is known that aqueous bromine reacts with quaternary ammonium bromides to form an immiscible organic phase. Depending on the number of quaternary ammonium bromides used and the environmental temperature, the second phase formed will either be solid or liquid. As any solid formation would interrupt the flow cell operation, potential formation of such kind has to be eliminated. Stability tests of simulated V/Br electrolyte with added quaternary ammonium bromides were carried out at 11, 25 and 40 oC. In the absence of bromine, the addition of MEM, MEP and TBA were found to be stable in V/Br electrolytes. However, in the presence of bromine, solid formation was observed in the bromine rich organic phase when the V/Br electrolyte contained a single quaternary ammonium bromide (QBr) compound. For V/Br electrolytes with binary or ternary QBr mixtures containing TBA, the presence of bromine caused a viscous polybromide phase to form at room temperature and the release of bromine gas at higher temperature. Only a binary mixture of MEM and MEP formed a stable liquid organic phase between 11 ?? 40 oC. In this study it was found that V/Br electrolytes containing a binary QBr mixture (0.75M) of MEM and MEP gave the best combination that formed an orange oily layer in the presence of bromine without solidification between 11 ?? 40oC. Furthermore, it was found that samples of V/Br electrolytes containing a ternary QBr mixture, are less effective in bromine capturing if the total QBr concentration was less than 1 M at 40oC, where bromine gas evolution was observed. From electrochemical studies of V3+/V2+, it was found that the addition of MEM and MEP had a minimal effect on the formal potential of the V3+/V2+ couple, the V2+/V3+ transfer coefficient and the diffusion coefficient of V3+. Therefore, MEM and MEP can be added to the negative half-cell of a V/Br flow cell without major interference From linear sweep voltammetry, the kinetics of the Br-/Br3- redox couple was found to be mass transfer controlled. After the addition of MEM and MEP mixture, the exchange current density was found to decrease from 0.013 Acm-2 to 0.01 Acm-2. On the other hand the transfer coefficient before and after MEM and MEP addition was found to be 0.5 and 0.44 respectively. Since the kinetic parameters were not significantly affected by the addition of MEM and MEP mixture, they can be added to the positive half-cell of the V/Br flow cell as bromine complexing agents. The electrochemical studies of both V3+/V2+ and Br-/Br3- showed the addition of MEM and MEP has minimal interference with the redox reactions of the vanadium bromide flow cell. This thesis also investigated the effect of MEM and MEP addition on the cell performance of a lab scale V/Br flow cell using two different membranes (ChiNaf and VF11). Flow cell performance for 2 M V3.7+ + 0.19 M MEM + 0.56 M MEP electrolytes utilising ChiNaf membrane at 10 mAcm-2 produced an energy efficiency of 59%, and this decreased to 43% after 15 cycles. For the static cell utilising VF11 membrane, the addition of MEM and MEP reduced the energy efficiency from 59.7% to 43.4%. It is believed that this is caused by the mass transfer controlled Br-/Br3- couple in the complexed positive half-cell solution. Therefore, uniformity between the organic and aqueous phase is important for flow cells utilising electrolytes with MEM and MEP. Finally, the polarization resistance of a lab scale V/Br flow cell utilising ChiNaf membrane and 2 M V3.7+ electrolytes was found to be slightly higher during cell charging (3.9 cm2) than during the discharge process (3.6 cm2), which is opposed to that in the all-vanadium redox cell.
|
6 |
SOIL ADHERENCE TO SOLID SURFACES: RELATION WITH FOULING AND CLEANINGDetry, Jean 23 June 2009 (has links)
This doctoral research was realized within the frame of the SMARTNET Project which aimed at developing coatings to improve the cleanability of stainless steel, targeting open surface applications.
Throughout this thesis, the radial-flow cell was selected to study the removal of different soils due to its ability to generate well-controlled wall shear stress distributions on the investigated surfaces. Model surfaces were selected for their different physico-chemical and mechanical properties to study the interactions between the soils and the surfaces in detail.
A thin layer chromatography sprayer giving a narrower and more reproducible droplet sizes distribution was preferred to mimic splashing and produce controlled spatters. The first experimental campaign involving oil droplets showed that the analytical models available to relate the detachment radius with the critical wall shear stress (minimal wall shear stress required for soil detachment) and the soil adhesion strength in the radial flow cell could only be applied for weakly adherent soils for which removal occurs below 3 Pa, due to the complex hydrodynamics near the inlet.
Consequently, the flow inside the radial-flow cell has been characterized using computational fluid dynamics over the whole inlet laminar regime and validated experimentally. Studying the adherence of starch granule aggregates in the radial-flow cell revealed that the conversion of critical radius into critical wall shear stress may be biased when the adhering aggregate height is not negligible with respect to the channel height and when the adherence is such that flow rates above creeping flow conditions are required
for soil detachment.
The influence of several environmental factors and substrate properties was then examined to improve the understanding of the mechanisms affecting soiling and cleanability. By influencing droplet spreading and competition between capillary forces at the granule-substrate and granule-granule interfaces, substrate wettability affects the shape and compactness of the adhering aggregates, the efficiency of shear forces upon cleaning, and finally the adherence of soiling particles. Macromolecules originating from the starch granules suspension are adsorbed on the substrate from the liquid phase or carried by the retracting film and
accumulated at the granule-substrate interface. They influence granule adherence by acting as an adhesive
joint, the properties of which seem to be influenced by the detailed history of drying and exposure to humidity.
On compliant substrates, the aggregate-substrate interactions induce stresses at the granule-substrate interface which may lead to substrate deformation and promote a more intimate contact between the granules and their substrate, thereby appreciably increasing adherence.
|
7 |
Chemical Application of Silicon-Based Resonant MicrosensorByun, Albert Joonsoo 31 May 2007 (has links)
The detection of volatile organic compounds in liquid is of interest for applications in public health, workplace safety and environmental monitoring. Traditionally, water samples were taken and analyzed in the laboratory using classical laboratory instrumentation. Current trends target real-time measurements using e.g. chemical microsensors built with microfabrication technologies. Among these, mass-sensitive chemical sensors, based on cantilever beams or surface acoustic devices, have shown substantial promise in gas-phase applications. In a liquid environment, the resonant microstructures typically suffer from high damping, which negatively affects the sensor resolution. In this work, a novel disk-type resonator developed at Georgia Tech was investigated as chemical microsensor for liquid-phase applications. The micromachined resonator vibrates in a rotational in-plane mode shape, reducing damping in a liquid environment. As part of the present research, a measurement setup with a custom-made flow cell for liquid-phase chemical measurements and a coating system to locally deposit polymer sensitive films onto the resonators were developed. To improve the film adhesion on the resonator surface in liquid, physical and chemical binding techniques were developed and tested on wafer samples. Polymers such as poly(4-vinylpyrrolidone), poly(ethylene-co-propylene) and poly(styrene-co-butadiene) were deposited using the custom-designed coating system onto the disk-type resonators. Liquid-phase measurements using tetrachloroethylene as the chemical analyte were performed. The experimental results are discussed, sources of problems are identified and recommendations for future research are made.
|
8 |
Mechanistic numerical study of trhombus growthBark, David Lawrence, Jr. January 2007 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2007. / Committee Chair: David N. Ku; Committee Member: Cyrus Aidun; Committee Member: Don P. Giddens.
|
9 |
Structuration d’électrode contrôlée pour des applications (bio)électrochimiques / Controlled electrode structuring for (bio)electrochemical applicationsLenz, Jennifer 30 September 2011 (has links)
Ce mémoire a été préparé dans le cadre du projet européen ERUDESP. Il décrit en détail les études qui ont été réalisées dans ce travail. Un bioréacteur sous forme d’une cellule bioélectrochimique à flux a été développé dans le but de servir pour la bioélectrosynthèse enantiopure. Le mémoire est consacré au design de cellules, screenings de différents médiateurs, au test de différentes réactions électroorganiques et électroenzymatiques à la fois dans une cellule électrochimique classique et dans une cellule électrochimique à flux. Un thème central de ce mémoire représente la synthèse d’électrodes macroporeuses tri-dimensionnelles. Grâce à cela, la surface active de l’électrode est augmentée de manière significative. Pour la préparation de ces électrodes une approche de template a été suivie. Des particules de polystyrène monodisperses ont été synthétisées de différentes manières et sont utilisées pour la synthèse des cristaux colloïdaux qui constituent les templates. Comme procédure de préparation contrôlée de ces templates, la technique de Langmuir-Blodgett et la méthode d’évaporation contrôlée, suivi par l’électrodéposition des métaux et des oxydes métalliques sont appliquées. Les diamètres des pores des matériaux macroporeux résultants sont parfaitement contrôlables par le diamètre des particules utilisées. La méthode de Langmuir-Blodgett a été étendue et appliquée pour la première fois à l’utilisation de particules de polystyrène. Le dépôt est réalisé dans les interstices des cristaux colloïdaux préparés préalablement, suivi par la dissolution des particules. De plus, des électrodes poreuses avec une grande surface de 6 x 6 cm2 ont été préparées. Les matériaux obtenus montrent une très bonne interconnéctivité avec une porosité ouverte et une surface active fortement augmentée ce qui se traduit électrochimiquement en une augmentation significative de la puissance du signal. Les matériaux poreux représentent un bénéfice non-seulement pour la (bio)électrosynthèse mais aussi dans le cadre de la (bio)électroanalyse. Dans ce mémoire, d’électrodes poreuses d’oxyde de ruthénium pour l’oxydation direct de NADH avec une surtension significativement améliorée ont été élaborée. La méthode de l’agrandissement de la surface est également appliquée et une meilleure densité de courant a été obtenue. Basé sur le projet ERUDESP, les méthodes apprises pour créer des électrodes poreuses à base de cristaux colloïdales ont dans la suite aussi été appliquées à d’autres domaines d’investigation. L’évolution méthodique de la technique de Langmuir-Blodgett a été utilisée pour le développement d’un système d’électrode renouvelable. Dans ce système, la surface peut être renouvelée sur commande par application d’un potentiel fixe (effet click).Les électrodes de l’oxyde de ruthénium ont non seulement été étudié dans le cadre du projet ERUDESP, mais la miniaturisation de ce matériau poreux et stable sous forme de microélectrodes a permis d’étudier une application comme capteur pH chimiquement et mécaniquement stable avec un meilleur ratio signal sur bruit. Dans ce cas le bruit thermique est diminué grâce à la porosité de l’électrode. Grâce à la technicité acquise par rapport à la synthèse des microélectrodes poreuses, des microélectrodes implantables pour les prothèses de main ont été aussi modifiées avec une couche macroporeuse pour augmenter la surface active et diminuer l’impédance de transition.Nous avons également exploré des couches multicatalyseurs macroporeuses de platine et nickel pour effectuer la génération d’hydrogène in-situ et l’hydrogénation simultanée dans un seul système catalytique.Comme dernière possibilité pour une structuration de surface contrôlée, des îlots de platine d’une étendue nanométrique furent examinées et biofonctionnalisées, ce qui résulte également en une augmentation significatif de la densité de courant. / The present work has been prepared within the framework of the European project ERUDESP and describes the research that has been carried out during this work. A bioreactor as a bioelectrochemical flow-cell was designed and realized with the goal to serve for enantiopure bioelectrosynthesis. The work deals with the cell design and screening of different mediators in a batch-cell and multi-cells, the development of different electroorganic and electroenzymatic reactions in an electrochemical batch- and flow-cell. With respect to the flow-cell, the upscaling of electrochemical reactions was carried out in the present work not only for electroorganic but also for electroenzymatic reactions with regard to the final application. A main focus of the present work represents the synthesis of three-dimensional macroporous electrodes in order to increase significantly the active surface. These macroporous structures were obtained by using the template approach. For the preparation of the templates monodisperse polystyrene particles were synthesized in different ways, and then used for the preparation of colloidal crystals serving as templates. As controlled assembly procedures, the Langmuir-Blodgett technique and the controlled evaporation method with subsequent electrodeposition of metals and metal oxides were chosen. With the present process the pore diameter could be exactly controlled by the diameter of the used particles. The approach of the Langmuir-Blodgett technique has been extended and optimized. For the first time, the Langmuir-Blodgett technique could be used with polystyrene particles. The deposition took place in the interspaces of the prepared colloidal crystals and is followed by the dissolving of the particles. Furthermore, the size of the porous electrodes could be upscaled (6 x 6 cm2). The obtained materials showed a very good interconnectivity with an open porosity and a highly increased active surface, which led to an increased electrochemical signal. The prepared porous materials represent a great benefit not only for (bio)electrosynthesis but also in the field of (bio)electroanalysis. In the framework of this work, the use of porous ruthenium oxide electrodes for direct oxidation of NADH with a significantly improved overvoltage was studied. Also in this context the increase of the surface led to an improved current density. Based on the ERUDESP project, the studied techniques for preparing porous electrodes with colloidal crystals were used for further scientific studies. The new variant of the Langmuir-Blodgett technique has also been used for the elaboration of a renewable electrode system where the surface can be simply renewed by applying a positive potential to the porous multilayers (click effect). The porous ruthenium oxide electrodes have not only been studied with respect to the ERUDESP project, but it was also possible to miniaturize this stable porous material as microelectrodes and use them as chemically and mechanically stable pH sensor with an improved signal to noise ratio. In this case the thermal noise decreased due to the porosity of the electrode. Due to the acquired expertise in the field of the preparation of porous microelectrodes, implantable microelectrodes for hand prosthesis were modified with a porous layer on the surface for increasing the active surface and decreasing their impedance.In addition, macroporous multicatalyst layers of platinum and nickel were synthesized for the simultaneous in-situ generation of hydrogen and hydrogenation reaction in the same catalyst system.As a final example for controlled surface structuring, nanoscale platinum islands were in detail examined and biofunctionalized. This led also to a significant increase of the current density.
|
10 |
Electrosynthesis of persulfate and hydrogen gas with boron doped diamond as the anode materialShneker, Sandra, Kebede, Tsion Abebaw, Lindbäck, Vera January 2022 (has links)
The efficiency of boron-doped diamond electrodes (BDD) has been investigated by electrolysis of an aqueous solution containing sodium sulfate. A Synthesis StarterKit from Condias was used, which contained the BDD anode with an active surface area of 3.14 cm2, and electrosynthesis was performed in a batch mode reactor. In this report, the electrooxidation of sodium sulfate to sodium persulfate is well reported. The production of persulfate was studied at different cell voltages and electrolyte concentrations. The amount of persulfate produced was determined by the iodometric titration and itwas found that its concentration in the electrolyte was directly proportional to the persulfate concentration, i.e, a larger amount of persulfate could be obtained when the electrolyte was highly concentrated, up to 1 M. For each of the samples the amount of persulfate that theoretically is possible to produce was calculated and subsequently compared to the actual amount of persulfate that was formed, ie. current efficiencies. These current efficiencies were unexpectedly low for all experiments except for one data point. Hydrogen gas was also produced as a by-product at the cathode, but it couldn ot be collected in the present setup. The results and some possible improvements are discussed in the report. / Effektiviteten av att använda bor-dopad diamant (BDD) för elektrosyntes med en vattenlösning innehållande natriumsulfat för att producera persulfat har undersökts. Den utrustningen som använde svar ett Syntes StarterKit från företaget Condias, denna innehöll en cell med BDD som anodmaterial vilken hade en aktiv area på 3,14 cm2. Produktionen av persulfat studerades vid olika cellspänningar och elektrolytkoncentrationer. Mängden av producerad persulfat bestämdes genom titrering. Detv isade sig att koncentrationen av elektrolyten var proportionell mot persulfatkoncentrationen, dvs. mer persulfat producerades vid högre elektrolytkoncentrationer. För varje prov beräknades även det teoretiska antalet mol persulfat som kan åstadkommas och jämfördes sedan med det faktiska antalet mol som producerades, detta gav strömeffektiviteten för den önskade reaktionen. Denna effektivitet var oväntat låg för alla prov förutom ett i experiment 4. Vätgas producerades som en biprodukt vid katoden, men på grund av begränsad tillgång till utrustning och tid kunde denna gas inte samlas uppför vidare analys. Resultaten och möjliga förbättringar diskuteras även i rapporten.
|
Page generated in 0.0728 seconds