• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 593
  • 108
  • 46
  • Tagged with
  • 747
  • 747
  • 747
  • 747
  • 161
  • 120
  • 102
  • 100
  • 99
  • 84
  • 80
  • 77
  • 74
  • 73
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Étude théorique de la structure et de la stabilité des alliages GeMn dans le cadre de la spintronique. Un prototype de semiconducteur magnétique confronté aux résultats expérimentaux.

Arras, Emmanuel 22 April 2010 (has links) (PDF)
La spintronique a déjà permis plusieurs avancées majeures mais le problème de l'injection de spin s'oppose encore à son utilisation généralisée en microélectronique. Le concept de semi-conducteur magnétique dilué (DMS) a été envisagé comme solution, mais s'avère difficile à appliquer aux semi-conducteurs de type IV, dans lesquels les atomes magnétiques sont très peu solubles et forment des précipités. Nous nous sommes intéressé dans ce travail au système germanium manganèse, et à la structure de certains précipités particuliers, qui semblent cohérents avec la matrice de Ge, et dont les caractéristiques magnétiques, chimiques et structurales ne correspondent à aucun composé connu. Nous avons utilisé dans ce travail des outils simulation de type ab initio par l'approche DFT avec utilisation de pseudopotentiels PAW. Nous générons dans un premier temps des pseudopotentiels nécessaires pour le Ge et le Mn. Puis nous montrons grâce à une étude thermodynamique que les méthodes premier principe permettent de reproduire le diagramme de phase (x,T=0) du système Ge(x)Mn(1-x). Nous étudions ensuite les défauts ponctuels de Mn dans la matrice de Ge et leur possibles agglomérations, et montrons qu'une "condensation" de défauts sur le réseau diamant ne peut pas expliquer les observations expérimentales. Enfin, nous montrons que certains composés ordonnés dérivés de systèmes proches sont métastables dans GeMn, et cette fois compatibles avec les mesures. Grâce à une étude complète des interfaces avec le Ge diamant, nous parvenons à expliquer la stabilité de nanocolonnes riches en Mn (33%) dans une matrice de Ge pur. Nous comparons par ailleurs les propriétés simulées de nos composés à l'expérience : température de Curie, spectre XAS, mais aussi diffraction de rayon X et microscopie électronique à transmission (TEM).
162

Electronic excitations in complex systems: beyond density functional theory for real materials

Botti, Silvana 22 April 2010 (has links) (PDF)
Aujourd'hui il est possible d'étudier à partir des premier principes la réponse sous excitation de matériaux utilisés dans des applications modernes très variés. En effet, grâce à de récents développements théoriques, ainsi qu'à l'optimisation des algorithmes de calcul, les simulations ab initio ne sont plus seulement limitées à des systèmes idéaux simplifiés, mais elles ont finalement l'ambition de capturer toute la complexité de l'échantillon testé dans l'expérience. Dans ce contexte, ce mémoire porte sur l'étude, à l'aide de différentes approches ab initio, des excitations électroniques dans une gamme de matériaux complexes et nanostructurés. Pour accéder aux excitations électroniques, la connaissance de la densité de l'état fondamental du système n'est plus suffisante, ce qui signifie que l'on doit trouver le moyen approprié d'aller au-delà de la théorie de la fonctionnelle de la densité (DFT) standard. Deux voies ont été intensivement explorées: l'une est basée sur la densité dépendante du temps et l'autre sur les fonctions de Green. La théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) a été proposée en 1984 par Runge et Gross, qui ont dérivé un théorème du type Hohenberg-Kohn pour l'équation de Schrödinger en fonction du temps. Le champ d'application de cette généralisation de la théorie de la fonctionnelle de la densité inclut le calcul des spectres de photo-absorption ou, plus généralement, l'étude de l'interaction de la matière avec des champs électromagnétiques ou des particules qui la perturbent. À présent, l'application la plus populaire de cette théorie est l'extraction des propriétés de l'état électronique excité, et en particulier des fréquences d'excitation électroniques. En appliquant la TDDFT, après avoir déterminé l'état fondamental d'une molécule ou un agrégat, nous pouvons explorer et comprendre son spectre d'absorption, ayant en même temps des informations extrêmement détaillées sur le comportement du système excité. La complexité du problème à plusieurs corps en TDDFT est cachée dans le potentiel d'échange et de corrélation dépendant du temps qui apparaît dans les équations de Kohn- Sham et pour lequel il est primordial de trouver une bonne approximation. Beaucoup d'approximations ont été proposées et testées pour les systèmes finis, où même la très simple approximation TDLDA a souvent donné de très bons résultats. En général, les approximations existantes pour la fonctionnelle d'échange et corrélation fonctionnent assez bien pour certaines propriétés, mais elles se montrent insuffisantes pour d'autres. Dans le cas des matériaux solides, la TDDLA ne parvient pas à reproduire les spectres d'absorption optique, qui sont par contre bien décrits par la résolution de l'équation de Bethe-Salpeter en combinaison avec l'approximation GW pour les états de quasi-électron. D'autre part, la TDLDA peut déjà conduire à des résultats excellents pour la fonction de perte d'énergie d'un solide. La solution de l'équation de Bethe-Salpeter est beaucoup plus onéreuse du point de vue numérique. Ainsi, on poursuit encore la recherche d'approximations fiables en TDDFT, et au fil du temps, on espère atteindre la même maturité qu'on trouve maintenant dans la DFT pour l'état fondamental. En particulier, de nouvelles perspectives (et ses limites) ont étés révélées pendant ces dernières années grâce à la combinaison de deux théories distinctes : la TDDFT et l'approche des fonctions de Green (dont l'approximation GW et l'équation de Bethe- Salpeter font partie). Ces deux approches peuvent partager dans la pratique le point de départ commun de la théorie de la fonctionnelle de la densité pour le calcul de l'état fondamental électronique. Leur combinaison permet d'allier la simplicité de l'une (TDDFT) avec la précision de l'autre (GW et Bethe-Salpeter), afin d'en déduire des noyaux d'échange et de corrélation pour les solides. À partir de ces noyaux nous avons aussi travaillé sur le développement de noyaux modèles pour des applications efficaces à des systèmes de grande taille. Le présent mémoire contient une vue d'ensemble relativement condensée de la TDDFT et des approches basées sur la théorie des fonctions de Green, avec des applications aux domaines des nanotechnologies, aux matériaux photovoltaïques et au stockage de données. Ces applications ont constitué notre principal sujet de recherche au cours des dernières années. Ce mémoire est organisée comme suit. Avant d'entrer dans le domaine des approches pour les états excités, nous donnons dans le chapitre 1 un bref aperçu des idées de base de la DFT pour l'état fondamental, ce qui nous permet d'expliquer pourquoi il faut aller au-delà de la DFT standard, d'introduire quelques concepts-clés et de fixer la notation de base qui sera utilisée dans ce mémoire. Les chapitres suivants font un point sur la théorie formelle, avec une brève présentation des approches théoriques utilisées pour étudier les excitations électroniques: le chapitre 2 est dédié aux approches GW et à l'équation de Bethe-Salpeter, tandis que la TDDFT et la théorie de la réponse linéaire sont décrites dans le chapitre 3. Les noyaux dérivés à partir de l'équation de Bethe-Salpeter et notre travail sur les noyaux modèles sont discutés dans le chapitre 4. Le chapitre 5 contient des applications de la TDDFT dans le domaine de la réponse linéaire aux nanostructures. L'objectif principal est d'obtenir des spectres fiables (en général des spectres d'absorption) à partir de calculs de premiers principes. En comparant ces spectres avec des courbes expérimentales, on peut normalement déduire des informations importantes qui ne sont pas directement accessibles dans les expériences. D'autre part, la connaissance détaillée des propriétés d'excitation électronique contribue à une meilleure compréhension de la physique de ces systèmes dans leur généralité. Le chapitre 6 présente des applications à des matériaux solides d'intérêt technologique. En particulier, nous nous sommes intéressé aux propriétés optiques des matériaux à changement de phase, utilisés dans le DVD re-inscriptibles, ainsi que aux états électroniques des absorbeurs et des oxydes transparents conducteurs pour les cellules solaires à couches minces. Le chapitre 7 est dédié aux cruciales interactions de van der Waals et au calcul – via la TDDFT – des paramètres qui les décrivent. Nous discutons à la fois des interactions entre deux agrégats, et entre un agrégat et une surface semi-conductrice. Le dernier chapitre 8 fait le point sur les résultats de notre réflexion.
163

Semi-empirical and ab initio calculations of the optical properties of semiconductor superlattices

Botti, Silvana 01 February 2002 (has links) (PDF)
La réduction de taille réalisée dans les hétérostructures mène à des états électroniques, fondamental et excité, largement différents de ceux du cristal en volume, et a ouvert la voie à une nouvelle génération de dispositifs optoélectroniques et photonique. Les super-réseaux diélectriques sont par exemple développés pour leurs propriétés non linéaires. Ces effets sont également trouvés dans des hétérostructures de semi-conducteur basées sur GaAs, qui a par lui-même les propriétés optiques non linéaires importantes. Dans la recherche de nouvelles sources optiques, l'anisotropie optique des super-réseaux de GaAs/AlAs-oxidé a été exploitée pour produire la conversion des fréquences optiques. Les super-réseaux de type GaAs/AlAs constituent donc un prototype pour la compréhension des structures artificielles, et leurs propriétés optiques ont été à fond étudiées expérimentalement et théoriquement. En particulier, la réduction de la symétrie cubique initiale de la structure diamant ou zinc-blende provoque une anisotropie optique. Le comportement des composents du tenseur diélectrique du super-réseaux GaAs/AlAs en fonction de la période de barrière/puits est une question qui suscite un très grand intérêt. Expérimentalement, on a observé une baisse remarquable de la biréfringence quand la période décroît. Pour étudier la réponse optique de ces systèmes, les détails de la structure électronique doivent être pris en considération, y compris des effets comme le repliement des bandes et le confinement. Une analyse simple en termes de particules indépendantes est insuffisante: les effets à plusieurs corps peuvent jouer un rôle crucial et tendent à être particulièrement importants quand l'échelle du système est réduite. Les calculs utilisant des pseudopotentiels semi-empiriques sur de super-réseaux de grande période ont récemment fourni une analyse détaillée des effets du repliement des bandes et du confinement. Néanmoins, il n'y avait aucun accord quantitatif avec l'expérience au sujet de la biréfringence statique, et ces calculs n'ont pas pu expliquer l'augmentation de cette quantité avec l'augmentation de la période du super-réseau même qualitativement. Aussi, nous avons calculé la biréfringence statique de super-réseaux (001) (GaAs)$_n$/(AlAs)$_n$ pour une période de barrière/puits variant de n=1 à n=8, en utilisant la théorie de la fonctionnelle de densité dépendante du temps (TDDFT). Nous confirmons les résultats des calculs semi-empiriques précédents basés sur un calcul à particules indépendantes, en exécutant des calculs ab initio dans la même approximation. Cependant, nous montrons que l'inclusion des effets de champs locaux change complètement les composants du tenseur diélectrique: la biréfringence théorique en maintenant en bon accord avec l'expérience. En fait, on obtient l'accord qualitatif, et quantitatif avec l'expérience, en incluant les effets de champs locaux. On montre en particulier que l'anisotropie des champs locaux explique les tendances expérimentales observées. Étonnamment, l'utilisation de l'approche de milieu effectif, ou le super-réseau est modelisé par un empilement de couches ayant la permittivité GaAs ou AlAs, est justifiée dans la direction d'empilement même pour les petites périodes, car les effets de champs locaux et de confinement s'annulent. Par contraste, les effets de confinement sont trouvés plus grands dans le plan perpediculaire à la direction d'empilement, et la théorie de milieu effectif est insuffisante.
164

Propriétés structurales de films de semi-conducteurs wurtzite hetéroépitaxiés selon des orientations non- et semi-polaires

Vennegues, Philippe 27 November 2009 (has links) (PDF)
Les nitrures d'éléments III et les alliages à base de ZnO, semi-conducteurs à large bande interdite étudiés au CRHEA, cristallisent dans la structure hexagonale wurtzite. Cette structure a la particularité d'être une structure polaire et les polarisations internes ont donc une forte influence sur les propriétés des hétérostructures à base de ces matériaux. Pour minimiser les effets de ces polarisations internes, un intense effort de recherche est mené sur l'étude d'hétérostructures fabriquées selon des orientations non- et semi-polaires. Cette étude est dédiée aux propriétés structurales de telles hétérostructures avec comme outil principal d'investigation la microscopie électronique en transmission. Les relations épitaxiales entre les films wurtzites et les substrats de saphir orientés R et M ont été déterminées. L'influence de ces relations épitaxiales sur les microstructures a été également mise ne évidence. Dans un second temps, les défauts structuraux présents ont été caractérisés en détail. Les densités de ces défauts sont très grandes et incompatibles avec l'utilisation de telles hétérostructures que ce soit pour la détermination fine des propriétés intrinsèques que pour leur utilisation dans des dispositifs optoélectroniques. Les procédés de croissance mis en place pour diminuer les densités de défauts seront présentés ainsi que les mécanismes permettant ces améliorations de la qualité cristalline.
165

Nanostructures Al(Ga)N/GaN pour l'optoélectronique intersousbande dans l'infrarouge proche et moyen

Kandaswamy, Prem Kumar 29 June 2010 (has links) (PDF)
Ce travail a porté sur la modélisation, l'épitaxie et la caractérisation de puits quantiques et de boîtes quantiques Al(Ga)N/GaN, qui forment la région active de composants intersousbande (ISB) opérant dans l'infrarouge proche (NIR) et l'infrarouge moyen (MIR). La croissance de ces structures a été réalisée par épitaxie par jets moléculaires. La caractérisation optique infrarouge montre que les champs électriques induits par la polarisation introduisent un décalage vers le bleu des transitions et peuvent modifier de façon critique la magnitude de l'absorption. Les boîtes quantiques (QDs) de GaN/AlN confinées en trois dimensions introduisent de nombreuses nouvelles propriétés pour leur utilisation en tant que région active de composants ISB. La croissance des QDs a été réalisée dans des conditions riche-Ga et riche-N. Les études spectroscopiques révèlent l'absence de recombinaisons non radiatives même dans le cas de QDs ayant des longs temps de vie. Les photodétecteurs fabriqués à partir de superréseaux de QDs de GaN/AlN présentent un photocourant dans le NIR et dans le MIR attribué respectivement aux transitions s-pz et s-pxy. Le courant d'obscurité dépend de la densité des QDs dû au transport hopping. Prévoyant l'importance des composants ISB dans les régions spectrales du MIR et de l'infrarouge lointain, nous avons obtenu une extension de la longueur d'onde ISB jusqu'à ~ 10 µm. Ce résultat a été obtenu en diminuant le champ électrique interne et en réduisant le confinement dans les puits quantiques GaN/AlGaN. Le dopage peut introduire un décalage vers le bleu de plus de 50% de l'énergie de transition ISB dû aux effets des corps multiples.
166

Injection de spins dans les semi-conducteurs

Grenet, Louis 19 May 2010 (has links) (PDF)
L'injection de courant polarisé en spin dans les semi-conducteurs est un point-clef de la spintronique, discipline qui vise à utiliser le spin de l'électron comme degré de liberté en électronique. Ce travail de thèse étudie l'injection de spins depuis une électrode ferromagnétique à travers une barrière tunnel vers un semi-conducteur en absence de champ magnétique. La polarisation du courant injecté est détectée optiquement, ce qui impose que l'aimantation des électrodes soit perpendiculaire aux plans des électrodes. Ce travail s'articule donc en deux parties. La première section traite de l'élaboration d'hétérostructures oxyde/métal ferromagnétiques pour l'injection de spins dans le GaAs et le Si. Les croissances d'électrodes de MgO/FePt par épitaxie par jets moléculaires sur GaAs et de Al2O3/CoPt par pulvérisation cathodique sur Si sont décrites. L'étude des propriétés structurales et magnétiques et de transport de ces couches a ainsi permis de montrer la possibilité d'obtenir des films minces à aimantation perpendiculaire pour l'injection de spins sur plusieurs matériaux. La deuxième partie se focalise sur le transport polarisé en spin dans le Silicium. L'injection de courant polarisé dans ce matériau en absence de champ magnétique externe est ainsi démontrée pour la première fois par des mesures d'électroluminescence. L'analyse de la lumière émise par un puits quantique de SiGe inséré dans une diode de Silicium montre une polarisation optique de l'ordre de 3% liée à la polarisation en spin du courant injecté.
167

Thermodynamique des gaz de fermions ultrafroids

Nascimbène, Sylvain 11 June 2010 (has links) (PDF)
Les gaz ultrafroids permettent d'étudier sous un angle nouveau des hamiltoniens complexes issus de la matière condensée, tels le modèle de Fermi-Hubbard. Cette thèse présente une nouvelle méthode de mesure de l'équation d'état d'un gaz ultrafroid, autorisant une comparaison directe avec la théorie. Elle repose sur une mesure de la pression à l'intérieur d'un gaz à partir de son image in situ. Nous appliquons cette méthode à l'étude d'un gaz de fermions en interaction résonnante, un gaz de 7Li en interaction faible servant de thermomètre. De manière surprenante, aucune des théories à N corps du gaz unitaire ne rend compte intégralement de l'équation déduite de cette analyse. Le développement du viriel extrait des données à haute température est en accord avec la résolution du problème à trois corps. A basse température nous montrons, contrairement à un certain nombre d'études antérieures, que la phase normale se comporte comme un liquide de Fermi. Enfin, nous obtenons la température critique de superfluidité grâce à une signature claire sur l'équation d'état. Nous avons aussi mesuré la pression de l'état fondamental en fonction du déséquilibre de spin et de la force des interactions - mesure directement utile à la description de la croûte des étoiles à neutrons. Nos données valident les simulations Monte-Carlo et sont en accord avec les corrections Lee-Huang-Yang au champ moyen pour un superfluide fermionique ou bosonique. Nous observons que, dans presque tous les cas, la phase partiellement polarisée peut être décrite comme un liquide de Fermi de polarons. La masse effective du polaron déduite de l'équation d'état est en accord avec une étude de modes collectifs.
168

Magnetostriction gigantesque de composite Magneto-rheologique

Diguet, Gildas 13 January 2010 (has links) (PDF)
Le but de cette thèse est l'étude expérimentale et théorique de l'élongation de M.R.E. (Magneto Rheological Elastomer) placé dans un champ magnétique homogène. Ces matériaux sont constitués de particules ferromagnétiques distribuées au sein d'une matrice élastique. La combinaison d'une matrice de silicone de faible module de Young (E0=0,14 MPa) combinée à la forte aimantation des particules de fer (µ0Msat=2,14 T) permet d'atteindre des déformations de plusieurs pourcents, pour un champ appliqué µ0H0=1,2 T. Le calcul des forces dipolaires entre les particules, distribuées aléatoirement dans un volume de forme cylindrique, couplé à un calcul de déformation (utilisant un logiciel F.E.M.) est en accord avec la mesure de magnetostriction. Un échantillon aimanté acquiert une énergie magnétique dite « démagnétisante » liée à sa forme : un échantillon « plat » aura une énergie démagnétisante plus importante qu'un échantillon « long ». L'aimantation d'un composite a été étudié dans cette thèse via 2 paramètres : l'aimantation à saturation et le coefficient de champ démagnétisant effectif. La mesure de déformation faite sur des échantillons de différentes formes montre l'effet de cette énergie démagnétisante : l'échantillon le plus plat (de facteur de forme c/a=0.3) se déforme ainsi jusqu'à près de 10 %. Un modèle basé sur la compétition entre l'énergie démagnétisante et l'énergie élastique, pendant la déformation, donne des valeurs de déformation prenant en compte cet effet de forme. Ce modèle prend en compte aussi l'effet de la fraction volumique sur la déformation du composite. Une concentration optimale de 27 % a été mesurée et prédite. La magnetostriction de composites avec des particules magnétiques dures a aussi été mesurée en fonction du champ. L'effet de l'hystérésis de ces particules génère un "effet mémoire" à la courbe de magnetostriction. Enfin, le comportement thermique de la magnetostriction de ces composites a été mesuré. La constante élastique de la matrice et l'aimantation des particules sont des fonctions de la température. Le rôle de ces paramètres permet de concevoir des matériaux avec différentes propriétés thermiques.
169

Mesures de contraintes par spectroscopie et imagerie Raman dans des dispositifs micro-électroniques

Romain-Latu, Eddy 14 December 2006 (has links) (PDF)
La spectroscopie Raman est utilisée dans le cadre de la caractérisation locale des contraintes mécaniques en microélectronique. Les effets des déformations sur le spectre Raman du silicium sont étudiés de manière à établir un protocole expérimental. Les notions importantes de résolution et d'observation sont abordées. Plusieurs techniques originales dérivées de la rétrodiffusion Raman sont mises en oeuvre. L'utilisation de l'ultraviolet proche permet d'améliorer considérablement la résolution spatiale des mesures Raman. Une méthode de mesure des contraintes basée sur le couplage entre simulations et expériences est développée. Différents dispositifs microélectroniques sont étudiés par cette méthode. Les résultats obtenus permettent de valider et d'étendre le champ d'application de la méthode. Des expériences de spectro-tomographie Raman sont réalisées sur des structures d'isolation. Enfin, une étude est menée sur des alliages silicium germanium.
170

Optical properties of GaN quantum dots and nanowires

Renard, Julien 28 September 2009 (has links) (PDF)
Nous avons étudié par diverses techniques de photoluminescence les propriétés optiques d'hétérostructures à base de composés III-N de structure wurtzite. Des expériences de photoluminescence résolues en polarisation nous ont permis de mettre en évidence l'influence des contraintes et du confinement sur la structure de bande d'une hétérostructure. L'étude de boites quantiques uniques GaN/AlN a pu être réalisée sur un système original : une boite quantique comme tranche d'un nanofil. Ce nouveau système nous a ainsi permis d'identifier les émissions de l'exciton et du biexciton. Nous avons également démontré le caractère d'émetteur de photon unique d'une boite quantique insérée dans un nanofil grâce à une expérience de corrélation de photon fonctionnant dans l'ultraviolet. Nous nous sommes également intéressés aux propriétés optiques de microdisques III-N et avons mesuré des facteurs de qualité atteignant 11000, ouvrant la porte à l'étude de l'effet Purcell dans ces structures. Finalement nous nous sommes penchés sur la dynamique des porteurs et du spin dans les hétérostructures GaN/AlN. Les boites quantiques se révèlent extrêmement efficaces pour éviter les recombinaisons non radiatives, les temps de déclin de la luminescence étant indépendants de la température même pour des boites présentant des déclins de l'ordre de la microseconde. Les boites quantiques semblent aussi être très efficientes pour supprimer les effets de diffusion sur le spin d'un exciton localisé. En effet des expériences d'alignement optique en pompage quasi résonnant nous ont permis de montrer que la polarisation induite était conservée sur la durée de vie de l'exciton et ce jusqu'à température ambiante.

Page generated in 0.0577 seconds