Spelling suggestions: "subject:"[een] AL2W3O12"" "subject:"[enn] AL2W3O12""
1 |
Synthesis, Phase Development, and the Mechanism for Negative Thermal Expansion in Aluminum TungstateRose, Kyle 05 1900 (has links)
An in-depth study of Al2W3O12 negative thermal expansion (NTE) ceramic was performed, focused on synthesis, phase mappings, and the underlying mechanisms shown to be responsible for NTE. Review of the literature has shown inconsistencies in reported values of the dilatometry measured coefficients of thermal expansion, and the temperature for the known monoclinic to orthorhombic phase transition. Two synthesis techniques are introduced: an ionic-liquid non-hydrolytic sol-gel synthesis route; and a low temperature solid state reaction synthesis for Al2W3O12. X-ray diffraction, Raman spectroscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) were used to verify the techniques. Two differential scanning calorimetry (DSC) experiments (high and low temperature) were performed on the material showing the transition between -5 and -20 °C and no other phase changes until a reported degradation above 1100 °C. Extensive dilatometry on the material led to the discovery of elastic transitions occurring in the polycrystalline sample capable of explaining the inconsistencies in reported dilatometry results. This is further developed into a proposed model defining the regions between these transitions. Each region has a different thermal expansion as well as a direct effect on the reaction of the material upon cooling. This proposed model may allow more consistent reporting of dilatometry results for NTE materials. Raman spectroscopy was performed from 25-725 °C on the material showing both a joining in the tungsten-oxygen bending modes as well as a broadening in the tungsten-oxygen stretching modes. This is consistent with Al-O-W angle changes along the same temperature range reported in literature as well as the transverse vibrational modes responsible for NTE.
|
2 |
[en] INFLUENCE OF DIFFERENT HEAT TREATMENT CONDITIONS ON THE POINT DEFECTS OF AL2W3O12 AND ITS OPTICAL AND THERMAL PROPERTIES / [pt] INFLUÊNCIA DE DIFERENTES CONDIÇÕES DE TRATAMENTOS TÉRMICOS SOBRE OS DEFEITOS PONTUAIS DO AL2W3O12 E SUAS PROPRIEDADES ÓTICAS E TÉRMICASESTEBAN CAMILO MORENO DIAZ 20 June 2022 (has links)
[pt] No desenvolvimento de materiais resistentes ao choque térmico, os
materiais com expansão térmica negativa ou próxima a zero têm sido de vital
importância nos últimos anos. A família de cerâmicas A2M3O12 (A = cátion
trivalente, M = cátion hexavalente) apresenta características promissoras para
evitar a ruptura por choque térmico, devido às suas propriedades diferenciadas de
expansão térmica. Contudo, mudanças na rede cristalina causadas por defeitos
pontuais podem gerar alterações neste material. A cerâmica Al2W3O12 pode conter
defeitos como vacâncias de oxigênio, que afetam suas propriedades ópticas,
térmicas e outras propriedades. O propósito deste trabalho é estudar a influência
das vacâncias de oxigênio sobre as propriedades da cerâmica Al2W3O12, bem
como, a importância da temperatura e da atmosfera sobre a geração de vacâncias
de oxigênio. A fase Al2W3O12 foi exposto a duas atmosferas (H2 e Ar) sob
temperaturas controladas de 300 graus C, 400 graus C e 500 graus C com o proposito de gerar
vacâncias de oxigênio. A cerâmica obtida desta forma foi caracterizada por
técnicas de difração de pó de raios-X (DPRX), espectroscopia por refletância de
difusão (DRS), espectroscopia de ressonância paramagnética eletrônica (EPR),
espectroscopia Raman, espectroscopia de fotoelétrons de raios-X (XPS) e teste de
condutividade térmica. A influência das vacâncias de oxigênio no coeficiente de
expansão térmica e na condutividade térmica nas amostras calcinadas em
atmosferas não-oxidantes foi demonstrada. As amostras calcinadas a 500 graus C
revelaram uma alta absorção do espectro ultravioleta e visível em relação às
amostras calcinadas em 300 graus C e 400 graus C. Além disso, foram constatados diferentes
estados reduzidos de valência do W (tais como W5+ e W4+) através da tecnica de
XPS a fim de compensar vacâncias de oxigênio que foram confirmadas pela
analise de EPR e Raman. / [en] In the development of materials resistant to thermal shock, materials with
negative or near zero thermal expansion have been of vital importance in recent
years. The A2M3O12 family of ceramics (A = trivalent cation, M = hexavalent
cation) has promising characteristics to avoid thermal shock rupture, due to its
atypical thermal expansion properties. Within this family is the Al2W3O12
ceramic, which has unique thermal properties and this allows its use in conditions
of thermal shock. However, changes in the crystal lattice caused by point defects
can generate alterations in this material. Al2W3O12 ceramic can contain defects
such as oxygen vacancies, which affect optical, thermal and other properties. The
goal of this study is to study the influence of oxygen vacancies on the properties
of Al2W3O12 ceramics, as well as the importance of temperature and atmosphere
in the generation of oxygen vacancies. The Al2W3O12 phase was exposed to two
atmospheres (H2 and Ar) at controlled temperatures: 300 degrees C, 400 degrees C and 500 degrees C to
generate oxygen vacancies. The ceramic obtained was characterized by X-ray
power diffraction (XRPD), diffusion reflectance spectroscopy (DRS), electron
paramagnetic resonance spectroscopy (EPR), Raman spectroscopy, X-ray
photoelectron spectroscopy (XPS) and thermal conductivity test. The influence of
oxygen vacancies on the coefficient of thermal expansion and thermal
conductivity in calcined samples in non-oxidizing atmospheres was demonstrated.
Samples calcined at 500 degrees C revealed high absorption of the ultraviolet and visible
spectra compared to the samples calcined 300 degrees C and 400 degrees C. In addition, different
states of reduced valence of W were found (such as W5+ and W4+), through the
XPS technique, in order to compensate of oxygen vacancies, that were confirmed
by EPR and Raman analysis.
|
Page generated in 0.0281 seconds