• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 16
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Auto-Tuning Apache Spark Parameters for Processing Large Datasets / Auto-Optimering av Apache Spark-parametrar för bearbetning av stora datamängder

Zhou, Shidi January 2023 (has links)
Apache Spark is a popular open-source distributed processing framework that enables efficient processing of large amounts of data. Apache Spark has a large number of configuration parameters that are strongly related to performance. Selecting an optimal configuration for Apache Spark application deployed in a cloud environment is a complex task. Making a poor choice may not only result in poor performance but also increases costs. Manually adjusting the Apache Spark configuration parameters can take a lot of time and may not lead to the best outcomes, particularly in a cloud environment where computing resources are allocated dynamically, and workloads can fluctuate significantly. The focus of this thesis project is the development of an auto-tuning approach for Apache Spark configuration parameters. Four machine learning models are formulated and evaluated to predict Apache Spark’s performance. Additionally, two models for Apache Spark configuration parameter search are created and evaluated to identify the most suitable parameters, resulting in the shortest execution time. The obtained results demonstrates that with the developed auto-tuning approach and adjusting Apache Spark configuration parameters, Apache Spark applications can achieve a shorter execution time than when using the default parameters. The developed auto-tuning approach gives an improved cluster utilization and shorter job execution time, with an average performance improvement of 49.98%, 53.84%, and 64.16% for the three different types of Apache Spark applications benchmarked. / Apache Spark är en populär öppen källkodslösning för distribuerad databehandling som möjliggör effektiv bearbetning av stora mängder data. Apache Spark har ett stort antal konfigurationsparametrar som starkt påverkar prestandan. Att välja en optimal konfiguration för en Apache Spark-applikation som distribueras i en molnmiljö är en komplex uppgift. Ett dåligt val kan inte bara leda till dålig prestanda utan också ökade kostnader. Manuell anpassning av Apache Spark-konfigurationsparametrar kan ta mycket tid och leda till suboptimala resultat, särskilt i en molnmiljö där beräkningsresurser tilldelas dynamiskt och arbetsbelastningen kan variera avsevärt. Fokus för detta examensprojekt är att utveckla en automatisk optimeringsmetod för konfigurationsparametrarna i Apache Spark. Fyra maskininlärningsmodeller formuleras och utvärderas för att förutsäga Apache Sparks prestanda. Dessutom skapas och utvärderas två modeller för att söka efter de mest lämpliga konfigurationsparametrarna för Apache Spark, vilket resulterar i kortast möjliga exekveringstid. De erhållna resultaten visar att den utvecklade automatiska optimeringsmetoden, med anpassning av Apache Sparks konfigurationsparameterar, bidrar till att Apache Spark-applikationer kan uppnå kortare exekveringstider än vid användning av standard-parametrar. Den utvecklade metoden för automatisk optimering bidrar till en förbättrad användning av klustret och kortare exekveringstider, med en genomsnittlig prestandaförbättring på 49,98%, 53,84% och 64,16% för de tre olika typerna av Apache Spark-applikationer som testades.
42

Solid-Solution Strengthening and Suzuki Segregation in Co- and Ni-based Alloys

Dongsheng Wen (12463488) 29 April 2022 (has links)
<p>Co and Ni are two major elements in high temperature structural alloys that include superalloys for turbine engines and hard metals for cutting tools. The recent development of complex concentrated alloys (CCAs), loosely defined as alloys without a single principal element (e.g. CoNiFeMn), offers additional opportunities in designing new alloys through extensive composition and structure modifications. Within CCAs and Co- and Ni-based superalloys, solid-solution strengthening and stacking fault energy engineering are two of the most important strengthening mechanisms. While studied for decades, the potency and quantitative materials properties of these mechanisms remain elusive. </p> <p><br></p> <p>Solid-solution strengthening originates from stress field interactions between dislocations and solute of various species in the alloy. These stress fields can be engineered by composition modification in CCAs, and therefore a wide range of alloys with promising mechanical strength may be designed. This thesis initially reports on experimental and computational validation of newly developed theories for solid-solution strengthening in 3d transition metal (MnFeCoNi) alloys. The strengthening effects of Al, Ti, V, Cr, Cu and Mo as alloying elements are quantified by coupling the Labusch-type strengthening model and experimental measurements. With large atomic misfits with the base alloy, Al, Ti, Mo, and Cr present strong strengthening effects comparable to other Cantor alloys. </p> <p> </p> <p>Stacking fault energy engineering can enable novel deformation mechanisms and exceptional strength in face-centered cubic (FCC) materials such as austenitic TRIP/TWIP steels and CoNi-based superalloys exhibiting local phase transformation strengthening via Suzuki segregation. We employed first-principles calculations to investigate the Suzuki segregation and stacking fault energy of the FCC Co-Ni binary alloys at finite temperatures and concentrations. We quantitatively predicted the Co segregation in the innermost plane of the intrinsic stacking fault (ISF). We further quantified the decrease of stacking fault energy due to segregation.  </p> <p><br></p> <p>We further investigated the driving force of segregation and the origin of the segregation behaviors of 3d, 4d and 5d elements in the Co- and Ni-alloys. Using first-principles calculations, we calculated the ground-state solute-ISF interaction energies and revealed the trends across the periodic table. We discussed the relationships between the interaction energies and the local lattice distortions, charge density redistribution, density of states and local magnetization of the solutes. </p> <p><br></p> <p>Finally, this thesis reports on new methodologies to accelerate first-principles calculations utilizing active learning techniques, such as Bayesian optimization, to efficiently search for the ground-state energy line of the system with limited computational resources. Based on the expected improvement method, new acquisition strategies were developed and will be compared and presented. </p>
43

Personalization of Bone Remodelling Simulation Models for Clinical Applications

Gutiérrez Gil, Jorge 15 January 2024 (has links)
[ES] El acceso a una atención sanitaria de alta calidad es un marcador importante del desarrollo de las sociedades humanas. Los aportes tecnológicos a la medicina han mostrado un potencial relevante para descubrir procedimientos efectivos a nivel preventivo, diagnóstico y terapéutico. En particular, los métodos computacionales permiten el procesamiento eficaz de datos médicos y, por tanto, pueden modelar sistemas biológicos complejos. Esto ha influido en el desarrollo de la Medicina Personalizada (MP) durante las últimas décadas, donde la obtención de conocimiento específico de cada caso permite realizar intervenciones a medida, todo ello a un coste de recursos accesible. La simulación de remodelación ósea es un campo prometedor en el contexto de la MP. Predecir un proceso de adaptación ósea en un caso concreto puede dar lugar a numerosas aplicaciones en el campo de las enfermedades óseas, tanto a nivel clínico como experimental. Mediante la combinación del Método de Elementos Finitos (FEM) y los algoritmos de remodelación ósea, es posible obtener modelos numéricos de un hueso específico a partir de datos médicos (por ejemplo, una tomografía computarizada). Todo ello puede dar lugar a una revolución en la medicina personalizada. / [CA] L'accés a una atenció sanitària d'alta qualitat és un marcador important del desenvolupament de les societats humanes. Les aportacions tecnològiques a la medicina han mostrat un potencial rellevant per a descobrir procediments efectius a nivell preventiu, diagnòstic i terapèutic. En particular, els mètodes computacionals permeten el processament eficaç de dades mèdiques i, per tant, poden modelar sistemes biològics complexos. Això ha influït en el desenvolupament de la Medicina Personalitzada (MP) durant les últimes dècades, on l'obtenció de coneixement específic de cada cas permet realitzar intervencions a mesura, tot això a un cost de recursos accessible. La simulació de remodelació òssia és un camp prometedor en el context de la MP. Predir un procés d'adaptació òssia en un cas concret pot donar lloc a nombroses aplicacions en el camp de les malalties òssies, tant a nivell clínic com experimental. Mitjançant la combinació del Mètode d'Elements Finits (*FEM) i els algorismes de remodelació òssia, és possible obtindre models numèrics d'un os específic a partir de dades mèdiques (per exemple, una tomografia computada). Tot això pot donar lloc a una revolució en la medicina personalitzada. / [EN] Access to high-quality healthcare is an important marker of the development of human societies. Technological contributions to medicine have shown relevant potential to discover effective procedures at a preventive, diagnostic and therapeutic level. In particular, computational methods enable efficient processing of medical data and can therefore model complex biological systems. This has influenced the development of Personalized Medicine (PM) over recent decades, where obtaining specific knowledge of each case allows for tailored interventions, all at an affordable resource cost. Simulation of bone remodeling is a promising field in the context of PM. Predicting a bone adaptation process in a specific case can lead to numerous applications in the field of bone diseases, both clinically and experimentally. By combining the Finite Element Method (FEM) and bone remodeling algorithms, it is possible to obtain numerical models of a specific bone from medical data (for example, a CT scan). All of this can lead to a revolution in personalized medicine. / Thanks to the Valencian funding programme FDGENT/2018, for providing economic resources to develop this long-term work. / Gutiérrez Gil, J. (2023). Personalization of Bone Remodelling Simulation Models for Clinical Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202059

Page generated in 0.7266 seconds