Spelling suggestions: "subject:"[een] BLAST"" "subject:"[enn] BLAST""
301 |
An Investigation of the Hydration of Steam-cured Ternary and Quaternary Cement BlendsClarridge, Elena 06 December 2011 (has links)
The influence of supplementary materials such as slag, metakaolin and limestone in steam-cured ternary and quaternary cement blends on physical and chemical hydration mechanisms was studied by analyzing the evolution of non-evaporable water content, hydration products and compressive strength. The role of limestone in hydration reactions of cement was also investigated. These properties were studied through the use of differential thermal and thermogravimetric analyses, as well as the loss-on-ignition, X-ray diffraction and compressive strength tests at 1, 3, 7, and 28 days. Research findings revealed that it is possible to replace up to 40% cement with other materials and still achieve compressive strengths similar to mixtures with a 25% cement replacement at 0.34 w/b ratio. Additionally, ternary limestone mixtures exhibited superior mechanical properties to ternary metakaolin mixtures. Lastly, limestone powder was determined to behave as inert filler, accelerating hydration at early ages through heterogeneous nucleation.
|
302 |
An Investigation of the Hydration of Steam-cured Ternary and Quaternary Cement BlendsClarridge, Elena 06 December 2011 (has links)
The influence of supplementary materials such as slag, metakaolin and limestone in steam-cured ternary and quaternary cement blends on physical and chemical hydration mechanisms was studied by analyzing the evolution of non-evaporable water content, hydration products and compressive strength. The role of limestone in hydration reactions of cement was also investigated. These properties were studied through the use of differential thermal and thermogravimetric analyses, as well as the loss-on-ignition, X-ray diffraction and compressive strength tests at 1, 3, 7, and 28 days. Research findings revealed that it is possible to replace up to 40% cement with other materials and still achieve compressive strengths similar to mixtures with a 25% cement replacement at 0.34 w/b ratio. Additionally, ternary limestone mixtures exhibited superior mechanical properties to ternary metakaolin mixtures. Lastly, limestone powder was determined to behave as inert filler, accelerating hydration at early ages through heterogeneous nucleation.
|
303 |
A bioinformatics pipeline for recovering misidentified proteinsMehrotra, Sudeep 07 September 2010
To examine the response of wheat to different temperatures and photoperiods at the proteomic level, a series of experiments was performed at the University of Saskatchewan, College of Agriculture and Bioresources, Department of Plant Science. Tandem-mass spectrometry (MS/MS) was used for protein identification. The iTRAQ approach was used to generate raw data for protein quantification. The Pro Group protein identification software was used for protein identification and quantification of differentially expressed proteins. Despite the input samples being from a plant,the software reported non-plant proteins. The traditional approach used by scientists to deal with this problem is to use sequence alignment software to find close green-plant homologs of the non-plant proteins from a plant-only database. Such a technique is problematic since homology-based sequence similarity does not generally equate to similarity of mass spectra. In this work a more radical approach was investigated and implemented. A bioinformatics pipeline was designed and implemented to report plant proteins misidentified by the Pro Group software. The approach drew its idea from the fact that MS/MS-based protein identification uses peptide fragments/ions bearing unique m/z values in the mass spectra. From the reported non-plant proteins and associated peptides, putative m/z values of the peptides are generated and then used to find alternate hits from a green plant-only database. The pipeline uses three different heuristics, each generating a list of candidate proteins. The proteins reported consistently across the three reported lists have the highest likelihood to be present in the original sample. To evaluate the performance of the pipeline, three separate experiments were performed. A set of known plant peptides, a combination of known plant and non-plant peptides and a set of known non-plant peptides were used as input to the pipeline. For each experiment a stringency value (threshold value) was set by the user. Better results were observed by specifying a tighter stringency; that is, more plant proteins were reported consistently across the three reported lists. The research presented in this thesis shows that m/z values, consideration of unique peptides and accounting for proteins with shorter sequences can be used to identify proteins. These characteristics can be used to identify proteins when limited information is available, in this case a list of non-plant proteins reported as being present in a plant-derived sample. The information available was limited because the original input data was already processed by the Pro Group software. The approach presented here is an alternative to a wet lab scientist using sequence alignment tools, sequence databases, and homology-based search. The pipeline can be enhanced by adding various other modules. The results presented here could be used as a foundation for a further study.
|
304 |
Multidimensional MRI of Myocardial Dynamics : Acquisition, Reconstruction and VisualizationSigfridsson, Andreas January 2009 (has links)
Methods for measuring deformation and motion of the human heart in-vivo are crucial in the assessment of cardiac function. Applications ranging from basic physiological research, through early detection of disease to follow-up studies, all rely on the quality of the measurements of heart dynamics. This thesis presents new improved magnetic resonance imaging methods for acquisition, image reconstruction and visualization of cardiac motion and deformation.As the heart moves and changes shape during the acquisition, synchronization to the heart dynamics is necessary. Here, a method to resolve not only the cardiac cycle but also the respiratory cycle is presented. Combined with volumetric imaging, this produces a five-dimensional data set with two cyclic temporal dimensions. This type of data reveals unique physiological information, such as interventricular coupling in the heart in different phases of the respiratory cycle.The acquisition can also be sensitized to motion, measuring not only the magnitude of the magnetization but also a signal proportional to local velocity or displacement. This allows for quantification of the motion which is especially suitable for functional study of the cardiac deformation. In this work, an evaluation of the influence of several factors on the signal-to-noise ratio is presented for in-vivo displacement encoded imaging. Additionally, an extension of the method to acquire multiple displacement encoded slices in a single breath hold is also presented.Magnetic resonance imaging is usually associated with long scan times, and many methods exist to shorten the acquisition time while maintaining acceptable image quality. One class of such methods involves acquiring only a sparse subset of k-space. A special reconstruction is then necessary in order to obtain an artifact-free image. One family of these reconstruction techniques tailored for dynamic imaging is the k-t BLAST approach, which incorporates data-driven prior knowledge to suppress aliasing artifacts that otherwise occur with the sparse sampling. In this work, an extension of the original k-t BLAST method to two temporal dimensions is presented and applied to data acquired with full coverage of the cardio-respiratory cycles. Using this technique, termed k-t2 BLAST, simultaneous reduction of scan time and improved spatial resolution is demonstrated. Further, the loss of temporal fidelity when using the k-t BLAST approach is investigated, and an improved reconstruction is proposed for the application of cardiac function analysis.Visualization is a crucial part of the imaging chain. Scalar data, such as regular anatomical images, are straightforward to display. Myocardial strain and strain-rate, however, are tensor quantities which do not lend themselves to direct visualization. The problem of visualizing the tensor field is approached in this work by combining a local visualization that displays all degrees of freedom for a single tensor with an overview visualization using a scalar field representation of the complete tensor field. The scalar field is obtained by iterated adaptive filtering of a noise field, creating a continuous geometrical representation of the myocardial strain-rate tensor field.The results of the work presented in this thesis provide opportunities for improved imaging of myocardial function, in all areas of the imaging chain; acquisition, reconstruction and visualization.
|
305 |
Numerical Modeling for the Prediction of Primary Blast Injury to the LungGreer, Alexander January 2006 (has links)
As explosive blasts continue to cause casualties in both civil and military environments, there is a need for increased understanding of the mechanisms of blast trauma at the organ level and a need for a more detailed predictive methodology. A fundamental understanding of blast injury will lead to the development of improved protective equipment and ultimately reduce the severity of injury. Models capable of predicting injury to varied blast loading will also reduce the emphasis on animal blast testing. To provide some historical context, this research was begun shortly after the U.S. led invasion of Iraq, and came to a close while there continues to be daily loss of life from blast injuries in the Middle East, as well as continued threats of terrorism throughout the world. In addition to industrial accidents, it is clear that blast injury is far more than just a military concern.
Simplified finite element models of the human and sheep thoraces were created in order to provide practical and flexible models for the prediction of primary blast injury in simple and complex blast environments, and subsequently for the development of improved protective equipment. The models were created based on actual human and sheep geometries and published material properties. The fluid-structure interaction of the models compared well with experimental blast studies carried out during the course of the research, as shown by comparing actual and predicted overpressures in the free field and at the thorax.
By comparing the models to published experimental data from simple blasts, trends in the results were verified and peak lung pressure was proposed as a trauma criterion. Local extent of injury in the lung is correlated to the peak pressure measured in each finite element, categorized as no injury (< 60 kPa), trace (60-100 kPa), slight (100-140 kPa), moderate (140-240 kPa) and severe (> 240 kPa). The calculation of the mean value of the peak lung pressures of all of the finite elements allows for an overall estimate of the injury level, with 35 kPa predicting threshold damage, 129 kPa for one percent lethality, and 186 kPa for fifty percent lethality. The simple blast results also compared well to the predictions of two previously validated mathematical models. Variation of predicted injury within a given loading severity was 15%, which is comparable to the model by Stuhmiller that had a variation of 20%. The model by Axelsson had very little variation (1.4%), but the differences between levels of severity were quite small, and often difficult to decipher. In addition to predicting consistent levels of injury, the finite element models were able to provide insight into the trauma mechanism, map the extent of injury through the lungs, and validate a local injury criterion.
The models were then applied to predict injury under complex blast loading by subjecting the human finite element torso to a threshold level blast while located at varying distances from a wall or a corner. The results compared well to the validated mathematical models, showing a sharp increase in injury severity as the model approached the reflecting surface. When directly against the wall, the mean of the peak lung pressure values was 57 kPa, and in the corner, the mean value reached 69 kPa. Although these values did not reach the level representing one percent lethality, they do represent a significant increase in injury above threshold as a direct result of the surrounding geometry. Once again, the finite element models correctly showed injury trends and lung injury patterns reported in experiments. The models predicted the level of injury and were able to predict the time varying pattern of injury, which is something existing models cannot do.
Having designed the models from physical principals, and having validated the models against published results, they can now be used in the continued development of protective equipment. Acknowledging that this model was the first iteration, the author believes that improvements in material properties, mesh refinement, and the investigation of other possible parameters for the prediction of injury will lead to substantial advances in the understanding of primary blast injury.
|
306 |
Tungmetaller i lakvatten : avskiljning med mineraliska filtermaterialHjelm, Veronica January 2005 (has links)
Four different kinds of filter-materials with reactive surfaces have been studied concerning their capacity to absorb heavy metals in leachate from a municipal waste deposit. The heavy metals studied were: lead, cadmium, copper, mercury, chromium, nickel and zinc. The leachate contains high levels of dissolved organic carbon (DOC) and has a high pH-value along with a high buffer capacity. These characteristics of the leachate make it difficult to remove pollutants and require efficient filters. The filters that were examined in the report are blast-furnace slag with CaO, sand covered with iron oxides, olivine and nepheline. The experiment was carried out in two sets, starting with batch experiments followed by a column study. The objective of the batch experiments was to find out how variations in pH affected the sorption capacity of the materials. The interval used during the test was from pH 5 to pH 10. The computer program VisualMinteq was used to evaluate the dominating sorption processes when the materials interacted with the solutions. Two different kinds of solutions were used in the batch experiment. One of them was the leachate, to which known concentrations of heavy metals were added (about 1 μM) and the other consisted of sodium nitrate, a solution without organic compounds, which was used as a reference. The sodium nitrate solution was also spiked with the same concentration of heavy metals as the leachate. The results from the batch experiment showed that the sorption of heavy metals was lowered if the DOC level was high. No relation between pH and sorption ability could be found for the leachate, but for some metals in the sodium solution a higher pH improved the removal of heavy metals. The two materials that showed best results in the batch experiment were the blast-furnace slag and the sand with iron oxides. These materials were used in the column study. The olivine material was somewhat better than the nepheline in the batch experiment. Four columns were used in the column study, two for each material. Leachate with heavy metals was pumped into the columns with a specific flow rate; at first a low flow rate was used and when half the experiment time had passed the flow rate was increased. The flow rates used were 0.12 m/24 h and 0.62 m/24 h. The outcome of the column experiment showed that the slag had the highest ability to adsorb metals. The metal sorption was over 60 percent for lead, cadmium and zinc, where the highest sorption was obtained for lead. No affects were noticed when the flow rate was increased. / I detta examensarbete har fyra olika reaktiva filtermaterials kapaciteter att ur deponilakvatten avskilja tungmetallerna bly, kadmium, koppar, kvicksilver, krom, nickel och zink testats. Deponilakvatten är ett avloppsvatten med höga halter organiskt material (DOC), högt pH och en hög buffertkapacitet. Dess sammansättning ställer stora krav på ett filter och närvaron av ligander påverkar sorptionprocesserna. Filtren som ingått i studien är kalciumoxiddopad masugnsslagg, järnoxidtäckt sand, olivin och nefelin. Försöken utfördes i två delar, med inledande skakförsök och därefter kolonnförsök. I båda försöken användes lakvatten med en extra tillsats av tungmetaller. I skakförsöken användes även natriumnitrat; ett referensvatten utan organiska ligander, även det spikat med tungmetaller. I skakförsöken studerades avskiljningens pH-beroende för de olika filtren, med ett pH-intervall på ca 5 – 10. Därefter modellerades resultaten i jämviktsprogrammet VisualMinteq för att fastställa vilka processer som styr avskiljningen. Skakförsöken och kolonnförsöken utfördes båda i klimatrum vid 8 ºC, för att efterlikna markens naturliga temperatur. Resultaten från skakförsöken visade att masugnsslagg och järnoxidsand gav bäst avskiljning för de flesta tungmetaller. Olivin och nefelin var sämre metallsorbenter, där olivin uppvisade något bättre resultat än nefelin. Inget tydligt pH-beroende för lakvattnet kunde utläsas, men för natriumnitratlösningen gav en pH-höjning en ökad sorption för vissa metaller. Den kemiska jämviktsmodelleringen visade att den dominerande processen i filtermaterialen var sorption på filterytorna. De två filtermaterialen som visade bäst resultat i skakförsöken (slagg och järnoxid) studerades vidare i kolonnförsök, där ett bestämt lakvattenflöde pumpades genom kolonner packade med materialen. Två olika flödeshastigheter testades (0,12 m/dygn och 0,62 m/dygn) och sorptionen av metaller analyserades. Slaggen uppvisade högst avskiljningskapacitet av de studerade filtren. De metaller som sorberades bäst var bly, kadmium och zink (över 60 % avskiljning), där den högsta sorptionen erhölls för bly. Gemensamt för både skak- och kolonnförsöken var att sorptionen försvårades då halten organiskt material (DOC) ökade, vilket beror på att DOC konkurrerar med de reaktiva ytorna på filtren om att binda den fria metalljonen. Ingen minskande avskiljningseffekt av en flödesökning kunde utläsas.
|
307 |
Fosforavskiljning i reaktiva filter vid småskalig avloppsrening / Reactive Filter Materials for Removal of Phosphorus in Small Scale Wastewater Treatment PlantsStark, Therese January 2004 (has links)
An excessive input of nutrients to lakes and other water bodies has created a problem with eutrophication in Sweden. Untreated, or partially treated, domestic sewage is a major source for discharge of phosphorus (P), which is the nutrient most frequently responsible for eutrophication of most fresh waters and the Baltic Sea. The waste water can be cleaned by filter materials, which have a high P-retention ability and which after saturation may be used as fertilizers. Four potentially suitable filter materials were tested in batch- and column experiments in this study. In the batch experiments, the following materials were shaken with waste water in time series ranging from 5 seconds to 60 minutes: coarse (1-4 mm) and fine (0-2 mm) Polonite® (heated bedrock from Poland); Filtralite® (light expanded clay aggregates with limestone added before burning); water cooled blast furnace slag (BF-slag) and BF-slag mixed with 10% burned limestone. In the column experiment, the phosphorus sorption capacity in BF-slag and BF-slag mixed with burned limestone was observed under saturated and unsaturated flow conditions for 10 weeks. The waste water used in both experiments originated from the full scale testing site at Ångersjön in Sweden. After the column experiment was ended, the filter materials were investigated with XRD (X-ray diffraction) and SEM (scanning electron microscope) in order to figure out which chemical reactions that had taken place. The results from the batch experiments show that fine Polonite® and BF-slag mixed with limestone have the fastest P sorption capacity. Already after 5 seconds of shaking the materials showed effective retention of P. The coarse Polonite®, Filtralite® and BF-slag showed similar sorption capacities, although the coarse Polonite® tended to be somewhat inferior. The column studies showed that the materials used in the columns had a sorption capacity of 98 % or more. The XRD and SEM indicated that an amorphous calcium-P-compound was created in the filter material. / I Sverige är reningen av fosfor i vatten från enskilda avlopp ofta bristfällig, vilket bland annat kan leda till övergödning av sjöar, hav och vattendrag. Sedan några år tillbaka har olika filtermaterial med speciella reaktiva egenskaper, som bland annat avskiljer fosfor från avloppsvatten, undersökts. Tanken med filtermaterialen är att de efter mättnad med näringsämnen ska kunnas användas som jordförbättringsmedel. I denna rapport har några olika filtermaterial, lämpade för fosforavskiljning, undersökts genom skak- och kolonnförsök. I skakförsök, där skaktiderna varierade mellan 5 sekunder och 60 minuter, testades Polonite®, Filtralite®, Hyttsand och Hyttsand blandad med 10 % bränd kalk. Polonite® är en upphettad form av bergarten opoka varav två olika kornstorleksfraktioner (0-2 mm och 1-4 mm) användes. Filtralite® och Hyttsand är antropogena filtermaterial. Filtralite® tillverkas i Norge och består av kalkhaltiga kulor av expanderad lera (Leca®). Hyttsand framställs genom vattenkylning av masugnsslagg som bildas vid framställningen av råjärn vid stålverket i Oxelösund. I kolonnförsöken, som utfördes under 10 veckor, studerades Hyttsand och Hyttsand blandad med 10 % bränd kalk under omättade och mättade flödesförhållanden. I samtliga experiment användes avloppsvatten från reningsverket vid Ångersjön, där Filtralite® och Hyttsand testas i fullskala. Efter kolonnförsöken avslutats undersöktes filtermaterialen med XRD (röntgendiffraktion) och SEM (svepelektron mikroskop) för att utreda vilka mekanismer som medverkat vid avskiljningen av fosfor. Resultaten från skakförsöken visade att finkornig Polonite® och Hyttsand blandad med kalk avskiljer fosfor effektivt redan efter skakning i 5 sekunder. Grovkornig Polonite, ren Hyttsand och Filtralite® sorberade fosfor tämligen likartat, även om den grovkorniga Poloniten® tenderade att vara aningen sämre än de övriga. Resultaten från kolonnförsöken visade att fosfor kunde avskiljas till över 98 % i alla kolonner och att det bildats amorfa fosfatföreningar, främst med kalcium, under den 2,5 månader långa experimentperioden.
|
308 |
Numerical Modeling for the Prediction of Primary Blast Injury to the LungGreer, Alexander January 2006 (has links)
As explosive blasts continue to cause casualties in both civil and military environments, there is a need for increased understanding of the mechanisms of blast trauma at the organ level and a need for a more detailed predictive methodology. A fundamental understanding of blast injury will lead to the development of improved protective equipment and ultimately reduce the severity of injury. Models capable of predicting injury to varied blast loading will also reduce the emphasis on animal blast testing. To provide some historical context, this research was begun shortly after the U.S. led invasion of Iraq, and came to a close while there continues to be daily loss of life from blast injuries in the Middle East, as well as continued threats of terrorism throughout the world. In addition to industrial accidents, it is clear that blast injury is far more than just a military concern.
Simplified finite element models of the human and sheep thoraces were created in order to provide practical and flexible models for the prediction of primary blast injury in simple and complex blast environments, and subsequently for the development of improved protective equipment. The models were created based on actual human and sheep geometries and published material properties. The fluid-structure interaction of the models compared well with experimental blast studies carried out during the course of the research, as shown by comparing actual and predicted overpressures in the free field and at the thorax.
By comparing the models to published experimental data from simple blasts, trends in the results were verified and peak lung pressure was proposed as a trauma criterion. Local extent of injury in the lung is correlated to the peak pressure measured in each finite element, categorized as no injury (< 60 kPa), trace (60-100 kPa), slight (100-140 kPa), moderate (140-240 kPa) and severe (> 240 kPa). The calculation of the mean value of the peak lung pressures of all of the finite elements allows for an overall estimate of the injury level, with 35 kPa predicting threshold damage, 129 kPa for one percent lethality, and 186 kPa for fifty percent lethality. The simple blast results also compared well to the predictions of two previously validated mathematical models. Variation of predicted injury within a given loading severity was 15%, which is comparable to the model by Stuhmiller that had a variation of 20%. The model by Axelsson had very little variation (1.4%), but the differences between levels of severity were quite small, and often difficult to decipher. In addition to predicting consistent levels of injury, the finite element models were able to provide insight into the trauma mechanism, map the extent of injury through the lungs, and validate a local injury criterion.
The models were then applied to predict injury under complex blast loading by subjecting the human finite element torso to a threshold level blast while located at varying distances from a wall or a corner. The results compared well to the validated mathematical models, showing a sharp increase in injury severity as the model approached the reflecting surface. When directly against the wall, the mean of the peak lung pressure values was 57 kPa, and in the corner, the mean value reached 69 kPa. Although these values did not reach the level representing one percent lethality, they do represent a significant increase in injury above threshold as a direct result of the surrounding geometry. Once again, the finite element models correctly showed injury trends and lung injury patterns reported in experiments. The models predicted the level of injury and were able to predict the time varying pattern of injury, which is something existing models cannot do.
Having designed the models from physical principals, and having validated the models against published results, they can now be used in the continued development of protective equipment. Acknowledging that this model was the first iteration, the author believes that improvements in material properties, mesh refinement, and the investigation of other possible parameters for the prediction of injury will lead to substantial advances in the understanding of primary blast injury.
|
309 |
A bioinformatics pipeline for recovering misidentified proteinsMehrotra, Sudeep 07 September 2010 (has links)
To examine the response of wheat to different temperatures and photoperiods at the proteomic level, a series of experiments was performed at the University of Saskatchewan, College of Agriculture and Bioresources, Department of Plant Science. Tandem-mass spectrometry (MS/MS) was used for protein identification. The iTRAQ approach was used to generate raw data for protein quantification. The Pro Group protein identification software was used for protein identification and quantification of differentially expressed proteins. Despite the input samples being from a plant,the software reported non-plant proteins. The traditional approach used by scientists to deal with this problem is to use sequence alignment software to find close green-plant homologs of the non-plant proteins from a plant-only database. Such a technique is problematic since homology-based sequence similarity does not generally equate to similarity of mass spectra. In this work a more radical approach was investigated and implemented. A bioinformatics pipeline was designed and implemented to report plant proteins misidentified by the Pro Group software. The approach drew its idea from the fact that MS/MS-based protein identification uses peptide fragments/ions bearing unique m/z values in the mass spectra. From the reported non-plant proteins and associated peptides, putative m/z values of the peptides are generated and then used to find alternate hits from a green plant-only database. The pipeline uses three different heuristics, each generating a list of candidate proteins. The proteins reported consistently across the three reported lists have the highest likelihood to be present in the original sample. To evaluate the performance of the pipeline, three separate experiments were performed. A set of known plant peptides, a combination of known plant and non-plant peptides and a set of known non-plant peptides were used as input to the pipeline. For each experiment a stringency value (threshold value) was set by the user. Better results were observed by specifying a tighter stringency; that is, more plant proteins were reported consistently across the three reported lists. The research presented in this thesis shows that m/z values, consideration of unique peptides and accounting for proteins with shorter sequences can be used to identify proteins. These characteristics can be used to identify proteins when limited information is available, in this case a list of non-plant proteins reported as being present in a plant-derived sample. The information available was limited because the original input data was already processed by the Pro Group software. The approach presented here is an alternative to a wet lab scientist using sequence alignment tools, sequence databases, and homology-based search. The pipeline can be enhanced by adding various other modules. The results presented here could be used as a foundation for a further study.
|
310 |
Spatial Variability and Terminal Density -Implications in Soil Behavior-Narsilio, Guillermo Andres 09 March 2006 (has links)
Geotechnical engineers often face important discrepancies between the observed and the predicted behavior of geosystems. Two conceptual frameworks are hypothesized as possible causes: the ubiquitous spatial variability in soil properties and process-dependent terminal densities inherent to granular materials. The effects of spatial variability are explored within conduction and diffusion processes. Mixtures, layered systems, inclusions and random fields are considered, using numerical, experimental and analytical methods. Results include effective medium parameters and convenient design and analysis tools for various common engineering cases. In addition, the implications of spatial variability on inverse problems in diffusion are numerically explored for the common case of layered media. The second hypothesis states that there exists a unique terminal density for every granular material and every process. Common geotechnical properties are readily cast in this framework, and new experimental data are presented to further explore its implications. Finally, an unprecedented field study of blast densification is documented. It involves comprehensive laboratory and site characterization programs and an extensive field monitoring component. This full scale test lasts one year and includes four blasting events.
|
Page generated in 0.0329 seconds