• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Aerodynamic performance of bluff bodies with openings on side surface / 側面開口部を設けたブラフボディの空力特性に関する研究

Wang, Jiaqi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22416号 / 工博第4677号 / 新制||工||1730(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 八木 知己, 教授 清野 純史, 教授 高橋 良和 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
22

Simulating Bluff-body Flameholders: On the Use of Proper Orthogonal Decomposition for Combustion Dynamics Validation

Blanchard, Ryan P. 03 June 2014 (has links)
Contemporary tools for experimentation and computational modeling of unsteady reacting flow open new opportunities for engineering insight into dynamic phenomena. In the work presented here, a novel use of proper orthogonal decomposition (POD) is described to validate the structure of dominant heat release and flow features in the flame, shear-layer, and wake of a bluff-body-stabilized flame. A general validation process is presented which involves a comparison of experimental and computational results, beginning with single-point mean statistics and then extending to the dynamic modes of the data using POD to reduce the ensemble of instantaneous flow field snapshots. The results demonstrate the use of this technique by applying it to large eddy simulations of the bluff body stabilized premixed combustion experiment. Large-eddy simulations (LES) using both Fluent and OpenFOAM were conducted to reproduce experiments conducted in an experimental test rig which was built as part of this work to study the behavior of turbulent premixed flames stabilized by bluff bodies. Planar Particle-Image Velocimetry (PIV) and filtered chemiluminescence were used to characterize the flow in the experiment's reacting and non-reacting regimes respectively. While PIV measurements could be compared directly to the velocity field in the simulations, the chemiluminescence measurements represented a line-of sight signal which was not directly comparable to the LES model. To account for this, the heat release in the LES models was integrated along simulated lines of sight by solving an additional discretized differential equation with heat release as the source term. The results show generally good agreement between the dominant modes of the experiment with those of the numerical simulations. By isolating the dynamic modes from each other via the proper orthogonal decomposition, it was shown the models were able to accurately reproduce the size, shape, amplitude, and timescale of various dynamic modes which exist the experiment, some of which are dwarfed by the other flow features and are not apparent using time-averaging approaches or by inspection of instantaneous snapshots of the flow. / Ph. D.
23

Dynamics of vortices in complex wakes: modeling, analysis, and experiments

Basu, Saikat 01 May 2014 (has links)
The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the vk vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-1 and +/-2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the model results with experiments conducted in a flowing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise. The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature. Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources. / Ph. D.
24

Flying snakes: Aerodynamics of body cross-sectional shape

Holden, Daniel Patrick 26 May 2011 (has links)
Chrysopelea paradisi, also known as the flying snake, possesses one of the most unique forms of aerial locomotion found in nature, using its entire body as a dynamic lifting surface without the use of wings or membranes. Unlike other airborne creatures, this species lacks appendages to aid in controlling its flight trajectory and producing lift. The snake exhibits exception gliding and maneuvering capabilities compared with other species of gliders despite this lack of appendages. While gliding, C. paradisi morphs its body by expanding its ribs, essentially doubling its width and utilizing its entire length as a reconfigurable wing. Its cross-sectional shape transforms into a thick, airfoil shape with a concave ventral surface, outwards protruding lips at the leading and trailing edges, a somewhat triangular dorsal surface with a round apex, and fore-aft symmetry. This study investigated the aerodynamic performance of this unique shape by simulating a single, static segment of the snake's body over a wide range of Reynolds numbers (3,000 to 15,000) and angles of attack (-10 to 60o) to simulate the full range of the snake's flight kinematics. This is the first study on an anatomically accurate snake model, and few aerodynamic studies have been performed in this low Reynolds number regime. Load cell measurements and time-resolved digital particle image velocimetry (TRDPIV) were performed on a 2D anatomically accurate model to determine the lift and drag coefficients, wake dynamics, and vortex shedding characteristics. This geometry produced a maximum lift coefficient of 1.9 and maximum lift to drag ratio of 2.7, and maintained increases in lift up to 35o. Overall, this geometry demonstrated robust aerodynamic behavior by maintain significant lift production and near maximum lift to drag ratios over a wide range of test parameters. These aerodynamic characteristics may enable the flying snake to glide at steep angles and over a wide range of angles of attack, often encountered in gliding trajectories. This geometry also produced larger maximum lift coefficients than many other bluff bodies and airfoils in this low Reynolds number regime. This thesis is organized as follows. The first section contains a broad introduction on gliding flight and C. paradisi's unique mode of gliding. The following section is a manuscript that will be submitted to a journal and contains the experimental analysis on the snake's cross-sectional shape. Several appendices attached to the end of this thesis contain additional analysis and work performed throughout the duration of this project and unique Matlab algorithms developed during this research. / Master of Science
25

Vorticity Modeling for the Flow Over Surface-Mounted Prisms

Qin, Lihai 25 May 2001 (has links)
Vorticity modeling is used to simulate the flow around a surface-mounted prism. The objective is to examine whether vorticity modeling can give satisfactory information about surface pressure fluctuations which are mostly due to the outer or inviscid flow. Differences between results obtained with vorticity modeling and what one should expect from DNS and LES are pointed out. These include the difference between the governing equations, the shortcomings of having a 2-D simulation and the realization of introducing and convecting vorticity to simulate some turbulence aspects. All necessary details needed for the setup of vorticity modeling for complex flows, such as the one considered here are given. These details include choice of elements, the calculation of velocities, the application of boundary conditions and calculation of pressure. The numerical procedure and our use of parallelization in the code are explained. The results presented on velocity magnitude, vorticity and pressure show important characteristics of the flow field in terms of interaction of positive and negative vorticities and their effects on the surface pressure. The calculated peak and mean values for the pressure coefficients at the leading edge are close to those measured in separating flows over prisms. / Master of Science
26

Turbulent flow around bluff bodies at the floodplain edge

Heatlie, Fiona January 2010 (has links)
This thesis examines the flow around bluff bodies placed at the floodplain edge in a compound, open channel. The floodplain edge location is associated with a strong shear layer between lower velocity floodplain flow and high velocity flow in the main channel. The drag force exerted by a bluff body is dependant on the way in which the flow separates around the body and subsequently recovers but the drag coefficients typically used to represent the effects of bluff bodies are based on experiments on bodies in geometrically simple channels. The differences induced in the wake structures and therefore in the drag coefficients of bluff bodies when they are placed in the shear layer at the floodplain edge are little understood. In this study, experimental data is gathered that allows direct comparison of the wakes of identical bluff bodies, both emergent (surface-piercing) and submerged, in simple and compound open channels. For the compound channel scenarios, for both single and multiple block arrangements, turbulence data is also reported. These results are augmented using a computational model based on the solution of the 3D Reynolds Averaged Navier Stokes equations, using a non-linear turbulence model. The results show that the changes induced in the wake structures due to their location at the floodplain edge of the compound channel can have a significant effect on the drag coefficient. For the emergent bodies, the proximity of the deep main channel flow is shown to impact in a complex manner upon the processes of reattachment and re-separation, changing the formation of vorticity in the wake. For the submerged bodies, this is complicated by asymmetry in the same processes on the block top. For both body types, separation on the main channel side results in the creation of a strong axial circulation at the floodplain edge and the decay of the wake is asymmetrically affected by the differing behaviour of the turbulence on the two sides.
27

On the integration of Computational Fluid Dynamics (CFD) simulations with Monte Carlo (MC) radiation transport analysis

Ali, Fawaz 01 December 2009 (has links)
Numerous scenarios exist whereby radioactive particulates are transported between spatially separated points of interest. An example of this phenomenon is, in the aftermath of a Radiological Dispersal Device (RDD) detonation, the resuspension of radioactive particulates from the resultant fallout field. Quantifying the spatial distribution of radioactive particulates allow for the calculation of potential radiation doses that can be incurred from exposure to such particulates. Presently, there are no simulation techniques that link radioactive particulate transport with subsequent radiation field determination and so this thesis develops a coupled Computational Fluid Dynamics (CFD) and Monte Carlo (MC) Radiation Transport approach to this problem. Via particulate injections, the CFD simulation defines the spatial distribution of radioactive particulates and this distribution is then employed by the MC Radiation Transport simulation to characterize the resultant radiation field. GAMBIT/FLUENT are employed for the CFD simulations while MCNPX is used for the MC Radiation Transport simulations. / UOIT
28

Combustion heat release effects on asymmetric vortex shedding from bluff bodies

Cross, Caleb Nathaniel 29 August 2011 (has links)
Combustion systems utilizing bluff bodies to stabilize the combustion processes can experience oscillatory heat release due to the alternate shedding of coherent, von Kármán vortices under certain operating conditions. This phenomenon needs to be understood in greater detail, since unsteady burning due to vortex shedding can lead to combustion instabilities and flame extinction in practical combustion systems. The primary objective of this study was to elucidate the influence of combustion process heat release upon the Bénard-von Kármán (BVK) instability in reacting bluff body wakes. For this purpose, spatial and temporal heat release distributions in bluff body-stabilized combustion of liquid Jet-A fuel with high-temperature, vitiated air were characterized over a wide range of operating conditions. Upon comparing the spatial and temporal heat release distributions, the fuel entrainment and subsequent heat release in the near-wake were found to strongly influence the onset and amplitude of the BVK instability. As the amount of heat release in the near-wake decreased, the BVK instability increased in amplitude. This was attributed to the corresponding decrease in the local density gradient across the reacting shear layers, which resulted in less damping of vorticity due to gas expansion. The experimental results were compared to the results of a parallel, linear stability analysis in order to further understand the influence of the combustion processes in the near-wake upon the wake instability characteristics. The results of this analysis support the postulate that oscillatory heat release due to BVK vortex shedding is the result of local absolute instability in the near-wake, which is eliminated only if the temperature rise across the reacting shear layers is sufficiently high. Furthermore, the results of this thesis demonstrate that non-uniform fuelling of the near-wake reaction zone increases the likelihood of absolutely unstable, BVK flame dynamics due to the possibility of near-unity products-to-reactants density ratios locally, especially when the reactants temperature is high.
29

On The Reduction Of Drag Of a Sphere By Natural Ventilation

Suryanarayana, G K 12 1900 (has links)
The problem of bluff body flows and the drag associated with them has been the subject of numerous investigations in the literature. In the two-dimensional case, the flow past a circular cylinder has been most widely studied both experimentally and computationally. As a result, a well documented understanding of the gross features of the near-wake around a circular cylinder exists in the literature. In contrast, very little is understood on the general features of three-dimensional bluff body near-wakes, except that the vortex shedding is known to be less intense. Control or management of bluff body flows, both from the point of view of drag reduction as well as suppressing unsteady forces caused by vortex shedding, has been an area of considerable interest in engineering applications. The basic aim in the different control methods involves direct or indirect manipulation (or modification) of the near-wake structure leading to weakening or inhibition of vortex shedding. Many passive and energetic techniques (such as splitter plates, base and trailing edge modifications and base bleed) have been effective in the two-dimensional case in increasing the base pressure, leading to varying amounts of drag reduction; a large body of this work is centered around circular cylinders because of direct relevance in applications. The present work is an attempt to understand some of the major aspects of the near-wake structure of a sphere and to control the same for drag reduction employing a passive technique. Many of the passive control techniques found useful in two-dimensional flows are not appropriate in the context of a sphere. In this thesis, the effects of natural ventilation on the wake and drag of a sphere at low speeds have been studied experimentally in some detail. Natural bleed into the base is created when the stagnation and base regions of a sphere are connected through an internal duct. Although natural ventilation has features broadly similar to the well known base-bleed technique (both involve addition of mass, momentum and energy into the near-wake), there are many significant differences between the two methods; for example, in base bleed, the mass flow injected can be controlled independent of the outer flow, whereas in natural ventilation, it is determined by an interaction between the internal and the external flow around the body. Experiments have been conducted in both wind and water tunnels, which covered a wide range of Reynolds number (ReDj based on the diameter of the sphere) from of 1.7 x 103 to 8.5 x 105 with natural boundary layer transition. The ratio of the frontal vent area to the maximum cross sectional area of the sphere was varied from 1% to 2.25% and the effect of the internal duct geometry, including a convergent and a divergent duct was examined as well. After preliminary force measurements involving different duct geometries and vent areas, it was decided to make detailed measurements with a straight (parallel) duct with a vent area ratio of 2.25%. Extensive flow visualization studies involving dye-flow, hydrogen bubble, surface oil-flow and laser-light-sheet techniques were employed to gain insight into many aspects of the near-wake structure and the flow on the surface of the sphere. Measurements made included model static pressures, drag force using a strain gauge balance and velocity profiles in the near-wake and internal flow through the vent. In addition, wake vortex shedding frequency was measured using a hotwire. In the subcritical range of Reynolds numbers (ReD< 2 x 105), the near-wake of the sphere (without ventilation) was found to be vortex shedding, with laminar separation occurring around a value of0s = 80° (where 0s is the angle between the stagnation point and separation location). In contrast, there was little evidence of vortex shedding in the supercritical range (ReD> 4 x 105), consistent with many earlier observations in the literature; however, flow visualization studies in the near-wake clearly showed the existence of a three-dimensional vortex-like structure exhibiting random rotations about the streamwise axis. In this range of Reynolds numbers, surface flow visualization studies indicated the existence of a laminar separation bubble which was followed by a transitional/turbulent reattachment and an ultimate separation around 0S = 145°. All the above observations are broadly consistent with the results available in the literature. With ventilation at subcritical Reynolds numbers, the pressure distributions on the sphere including in the base region was only weakly altered, resulting in a marginal reduction in the total drag; because of the higher pressure difference between the stagnation and base regions, the mean velocity in the vent-flow was about 0.9 times the free-stream velocity. As may be expected, there was little change in the location of laminar separation on the sphere and the vortex shedding frequency was virtually unaltered due to ventilation. The relatively small effects on pressure distribution and drag suggest weak interaction between the vent-flow and the separated shear layer in the subcritical regime. The time-averaged near-wake flow revealed a stagnation point occurring between the vent-flow and the reverse flow in the near-wake, along with the formation of a torroidal vortex between the stagnation point and the near-wake closure; these features bear some resemblance to those observed with base bleed from a blunt base. With ventilation in the supercritical range of Reynolds numbers (ReD > 4 x 105), significant reduction in the total drag, of as much as 65%, was observed from force measurements. Pressure distributions showed higher pressures in the separated flow zone (consistent with reduced drag) as a result of which the internal mass and the mean velocity of the vent-flow were lower (0.69 times the free-stream velocity) compared to the value in the subcritical flow regime. Flow visualization studies clearly showed that the three-dimensional rotating structure (associated with the wake of the unvented sphere) was significantly modified by ventilation, leading to more symmetric and steady near-wake features. The larger effects on pressure distribution and drag suggest strong interaction between the vent-flow and the separated shear layer, promoted by their close proximity. The comparison of power spectral density of u1 signals in the near-wake showed significant reduction in the amplitude at all frequencies, consistent with observations from flow visualization studies. The time-averaged near-wake flow features a pair of counterrotating ring vortices which are trapped between the outer separated shear layer and the vent-flow shear layer; such a mean flow pattern is qualitatively similar to that behind an axisymmetric base with a central jet with unequal freestream velocities in the jet and outer flow. This study strongly suggests that natural ventilation can provide significant total drag reduction provided the vent-flow is in close proximity of the separated shear layer promoting a strong interaction between them. Drag reduction is associated with more symmetric and relatively steady near-wake features in contrast with the unvented sphere.
30

Dynamics of the unstable wake modes in automotive aerodynamics : from simplified models to real vehicles / Dynamiques des modes instables de sillages en aérodynamique automobile : des modèles simplifiés aux véhicules réels

Bonnavion, Guillaume 05 October 2018 (has links)
Depuis la découverte des modes asymétriques dans le sillage d'un corps simplifié d'automobile, réminiscents d'une bifurcation à bas nombre de Reynolds, se posent des questions propres au développement aérodynamique des véhicules terrestres telles que l'influence du vent latéral, de l'assiette et du rétreint d'arrière-corps couramment utilisé en phase d'optimisation. Notre travail s'attache à répondre expérimentalement à ces questions pour des géométries simplifiées mais aussi réelles. Les essais sont réalisés en soufflerie industrielle à l'échelle 2/5 pour le corps académique et en pleine échelle pour les monospaces. Nous montrons que le désalignement du véhicule par rapport à l'écoulement incident n'a pour effet que de modifier l'orientation du mode asymétrique sans en changer l'intensité. Nous construisons un modèle simple prédisant non seulement cette orientation mais aussi les conséquences sur les efforts aérodynamiques transverses. La contribution de l'instabilité sur les coefficients aérodynamiques de portance ou d'effort latéral est de l'ordre de 0,02 indépendamment du vent de travers et de l'assiette du véhicule. Les rétreints d'arrière-corps affectent également la dynamique du sillage et son orientation, mais l'instabilité n'est jamais supprimée. Ces résultats sont retrouvés pour des véhicules réels de type monospace dont le sillage est donc également soumis au même mode asymétrique, révélé sans ambigüité par des expériences de sensibilité en assiette. Nos résultats indiquent que, pour tous les véhicules considérés, le mode asymétrique de sillage est systématiquement présent dans l'enveloppe de conduite. Le contrôle ou la suppression de ce mode devrait offrir de nouvelles perspectives d'optimisation des véhicules à culot droit de type monospaces ou SUV. / Since the recent discovery of asymmetric modes in the wake of a simplified vehicle geometry, reminiscent from a bifurcation at low Reynolds numbers, some questions related to the aerodynamic development of ground vehicles such as the influence of lateral wind, pitch and afterbody boat-tail classically used during shape optimization remain unanswered. Our work is devoted to assess those questions experimentally for simplified but also real geometries. The tests are conducted in an industrial wind-tunnel, at the 2/5-scale for the academic body and at the full scale for the minivans. We show that the vehicle's misalignment only modifies the asymmetric mode's orientation without affecting its intensity. We build a model predicting not only this orientation but also the consequences on the cross-flow aerodynamic loading. The contribution of the instability to the lift or side force coefficients is of the order of 0,02 independently of lateral wind or of the vehicle's pitch. Afterbody boat-tails also impact the wake dynamics and its orientation but the instability is never suppressed. These results are retrieved for real vehicles such as minivans, whose wake is then subjected to the same asymmetric mode as well, revealed unambiguously with pitch sensitivity experiments. Our results indicate that, for all considered vehicles, the asymmetric wake mode is systematically present in the driving envelope. The control or the suppression of this mode should offer new optimization's perspectives for blunt based vehicles such as minivans or SUVs.

Page generated in 0.048 seconds