• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 12
  • 12
  • 8
  • 8
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 117
  • 90
  • 46
  • 38
  • 21
  • 20
  • 20
  • 15
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Real-time Interrogation of Fiber Bragg Grating Sensors Based on Chirped Pulse Compression

Liu, Weilin January 2011 (has links)
Theoretical and experimental studies of real-time interrogation of fiber Bragg grating (FBG) sensors based on chirped pulse compression with increased interrogation resolution and signal-to-noise ratio are presented. Two interrogation systems are proposed in this thesis. In the first interrogation system, a linearly chirped FBG (LCFBG) is employed as the sensing element. By incorporating the LCFBG in an optical interferometer as the sensor encoding system, employing wavelength-to-time mapping and chirped pulse compression technique, the correlation of output microwave waveform with a chirped reference waveform would provide an interrogation result with high speed and high resolution. The proposed system can provide an interrogation resolution as high as 0.25 μ at a speed of 48.6 MHz. The second interrogation system is designed to achieve simultaneous measurement of strain and temperature. In this system, a high-birefringence LCFBG (Hi-Bi LCFBG) is employed as a sensing element.
42

Photonic Dispersive Delay Line for Broadband Microwave Signal Processing

Zhang, Jiejun January 2017 (has links)
The development of communications technologies has led to an ever-increasing requirement for a wider bandwidth of microwave signal processing systems. To overcome the inherent electronic speed limitations, photonic techniques have been developed for the processing of ultra-broadband microwave signals. A dispersive delay line (DDL) is able to introduce different time delays to different spectral components, which are used to implement signal processing functions, such as time reversal, time delay, dispersion compensation, Fourier transformation and pulse compression. An electrical DDL is usually implemented based on a surface acoustic wave (SAW) device or a synthesized C-sections microwave transmission line, with a bandwidth limited to a few GHz. However, an optical DDL can have a much wider bandwidth up to several THz. Hence, an optical DDL can be used for the processing of an ultra-broadband microwave signal. In this thesis, we will focus on using a DDL based on a linearly chirped fiber Bragg grating (LCFBG) for the processing of broadband microwave signals. Several signal processing functions are investigated in this thesis. 1) A broadband and precise microwave time reversal system using an LCFBG-based DDL is investigated. By working in conjunction with a polarization beam splitter, a wideband microwave waveform modulated on an optical pulse can be temporally reversed after the optical pulse is reflected by the LCFBG for three times thanks to the opposite dispersion coefficient of the LCFBG when the optical pulse is reflected from the opposite ends. A theoretical bandwidth as large as 273 GHz can be achieved for the time reversal. 2) Based on the microwave time reversal using an LCFBG-based DDL, a microwave photonic matched filter is implemented for simultaneously generating and compressing an arbitrary microwave waveform. A temporal convolution system for the calculation of real time convolution of two wideband microwave signals is demonstrated for the first time. 3) The dispersion of an LCFBG is determined by its physical length. To have a large dispersion coefficient while maintaining a short physical length, we can use an optical recirculating loop incorporating an LCFBG. By allowing a microwave waveform to travel in the recirculating loop multiple times, the microwave waveform will be dispersed by the LCFBG multiple times, and the equivalent dispersion will be multiple times as large as that of a single LCFBG. Based on this concept, a time-stretch microwave sampling system with a record stretching factor of 32 is developed. Thanks to the ultra-large dispersion, the system can be used for single-shot sampling of a signal with a bandwidth up to a THz. The study in using the recirculating loop for the stretching of a microwave waveform with a large stretching factor is also performed. 4) Based on the dispersive loop with an extremely large dispersion, a photonic microwave arbitrary waveform generation system is demonstrated with an increased the time-bandwidth product (TBWP). The dispersive loop is also used to achieve tunable time delays by controlling the number of round trips for the implementation of a photonic true time delay beamforming system.
43

An oceanographic pressure sensor based on an in-fibre Bragg grating

Bostock, Riccardo 27 April 2020 (has links)
Deep-ocean pressure measurements are a necessary component for ocean characterization and oceanographic monitoring. Some principle applications such as tsunami detection and ocean floor subsidence are reliant on deep-ocean pressure measurement data. The deep ocean is a challenging environment especially for pressure measurements; discerning pressure changes that are a small fraction of the ambient pressure calls for intelligent engineering solutions. An ocean-deployable concept model of a pressure sensor is developed. The design is based on a diaphragm transducer intended for measuring hydrostatic pressure changes on the order of 1 centimeter of water (cmH2O) while exposed to ambient pressures several orders of magnitude greater for up to 2500 meters of water (mH2O). Two laboratory-scale pressure sensors are fabricated to test the fundamental principle of the proposed concept at lab-safe pressures. One is a single-sided sensor exposed to atmospheric pressure. The second sensor is a two-sided design that operates at a defined target depth pressure and measures the differential pressure across both faces of the diaphragm. The sensor design built for atmospheric pressure testing observed a mean experimental sensitivity of 6.05 pm/cmH2O in contrast to 6 pm/cmH2O determined theoretically. The percent error between the experimental and theoretical values is 0.83%. The second design was tested at target depth pressures of 10, 20, 40, and 60 psi (7, 14, 28, and 42 mH2O) and performance was within 5.8%, 2.8%, 0.7%, 4.0% respectively when considering percent error of the mean experimental and theoretical. The repeatability was sufficient for a given sample and pressure response within the range proposed in theory when a pressure preload was present to the diaphragm. Future work will aim at developing a design concept that incorporates a piston and is tested at a higher hydrostatic pressure system, and within ocean waters. A deployment plan and consideration of challenges associated with ocean testing will be accounted for. / Graduate
44

Šumové charakteristiky optického signálu zesíleného optickým vláknovým zesilovačem / Noise characteristics of the optical signal amplified by optical fiber amplifier

Dašovský, Jakub January 2017 (has links)
This master thesis deals with problematics of information transmission trough optical fiber and spreading of the electromagnetic field at wavelengths of light. There are analyzed characteristics of the optical signal, and described methods of measuring wavelength of the optical signal power and noise level of the useful signal. Another examined parameter is OSNR at the input and on the output of the optical fiber amplifier EFDA.
45

Evaluation of Strain and Temperature Measurements with Fiber Bragg Grating for Loss Verification and Heat Transfer of Ball Bearings

Karlsson, Alexander, Marcus, Eric January 2021 (has links)
Volvo Cars is in a change of producing only electric and hybrid cars by 2025.Subcomponent testing is a crucial part to ensure the quality of the individual buildingblocks in an electric machine. Any way of making these tests more reliable and less timeconsuming is of great interest at Volvo. Force and temperature on bearings are especiallyhard to measure accurately, because of their placement and dynamic behavior. Accurateand reliable measurements is also a vital part in creating realistic Computer-AidedEngineering (CAE) models for simulation purposes. Simulations on bearings could lead tobetter bearing choices and accelerate the design process. This could increase bearing lifeand increase the Electrical Vehicle (EV) range due to minimized friction losses. FiberBragg Grating (FBG) sensors is a technology that has some key advantages overconventional sensors. They are immune to EMI, smaller in size, can have multiple sensorsin one fiber and can measure multiple physical quantities at the same time. Volvo Cars isinterested in investigating whether this sensor technology could be a candidate forreplacing some of the current measurement setup configurations.The project was divided into three parts, validating sensor equipment, find method forinstallation and measurement on a bearing and development of a CAE model for bearinglosses and heat transfer. To validate the sensor equipment a Measurement SystemAnalysis (MSA) was performed on two FBG fibers, one FBG isolated from strain fortemperature measurement and one FBG array with multiple sensing points. From theMSA it could be seen that the FBG temperature sensor had a total uncertainty of 3.4 °CThe FBG array had a strain uncertainty of 1.04 μ𝜀 and a temperature uncertainty of 0.4 °C.The uncertainty of both the FBG array and the FBG temperature sensor is highlydependent on the calibration of the sensitivity constant. The force measurement on thebearing was done with a concept based on the wavelength difference, produced by strain,between two FBG sensors. The concept was tested in a dynamic component rig where anaxial force could be applied, and the wavelength difference measured. The temperatureon the outer ring of the bearing was measured using an FBG isolated from strain. The testresults were promising, but since the FBG is sensitive to temperature and strain theincreased temperature difference between the two fibers affected the results. Thecalibration method needs to be compensated for the increased temperature differencebetween the fibers which is generated when the rotational speed is increased, and thiscould not be done with a single temperature measurement. The two developed CAEmodels was both constructed in MATLAB and showed similar behavior with experimentaltests done by others. To validate the models, physical test for heat transfer and bearinglosses should be performed.
46

Caractérisation des profils d'indice de réseaux de Bragg innovants en module et phase / Amplitude and phase index profile characterization of innovative fiber Bragg gratings

Tsyier, Sergei 18 April 2013 (has links)
Récemment, de nouvelles techniques ont été développées pour la fabrication des réseaux de Bragg à profil complexe. Ces composants photoniques sont utilisés dans plusieurs applications émergentes telles que la compensation de la dispersion pour les systèmes de communication de longue portée, les lasers à fibre, multiplexeurs et détecteurs optiques. Le diagnostic après inscription devrait fournir les informations nécessaires pour l’amélioration de la fabrication des réseaux de Bragg. Nous savons que les propriétés spectrales du réseau de Bragg sont liées au profil d’indice Δn. Les techniques de mesure directes, telles que la diffraction latérale de Krug, permettent de retrouver l’amplitude de modulation d’indice le long du réseau. Cependant, ces techniques sont insensibles aux fluctuations de phase. Une méthode alternative de caractérisation indirecte fondée sur l’algorithme de Layer-Peeling (LP) a été proposée. Toutefois elle ne peut pas être appliquée à la caractérisation des réseaux longs en raison de la propagation du bruit de calcul. Dans cette thèse nous avons présenté une nouvelle technique pour la mesure directe de l’amplitude et de la phase du profil d’indice le long du réseau de Bragg fondée sur la luminescence bleue (LB) induite par l’irradiation UV. Nos résultats expérimentaux de la mesure du profil de modulation d’indice sont en bonne correspondance avec la méthode de Krug. La méthode que nous proposons peut être appliquée à la caractérisation des réseaux longs. Elle permet de retrouver simultanément l’amplitude de modulation d’indice Δnac(z), la fonction du chirp et détecter le changement de l’indice moyen Δndc(z). / N the last decade new techniques were developed for fabrication of sophisticated Fiber Bragg Gratings (FGBs). This has been motivated by the emergence of many applications such as dispersion compensation for long-haul communication systems, DFB fiber lasers, optical add/drop multiplexers, and optical sensors. Post-fabrication diagnostics should provide relevant information to enhance the FBG fabrication process. It is well known that the FBG spectral properties are related to the index profile Δn. Direct measurement techniques, such as the side diffraction method reported by P. Krug, allow determining the index modulation amplitude along the FBG. Nevertheless, these techniques provide no information about phase fluctuations. An alternative method of indirect characterization, based on the Layer-Peeling (LP) algorithm, consists in Bragg grating profile reconstruction from its complex reflectivity. However, the LP method is unstable when applied to characterize long FBGs (>1mm) due to the error propagation effect. In this thesis we have shown the principle of a novel technique for the direct measurement of amplitude and phase variations of the index modulation along an FBG based on the blue luminescence (BL). Our experimental results are in a good agreement with the according Krug characterization. The proposed method of FBG characterization in amplitude and phase using the UV induced BL can be applied to long gratings (up to tens of centimeters) having complex index modulation profiles. It allows retrieving simultaneously the index profile modulation Δnac(z) and the chirp function, localizing phase shifts, and also detecting the mean index change Δndc(z).
47

Embedding fiber Bragg grating sensors through ultrasonic additive manufacturing

Schomer, John J. 08 August 2017 (has links)
No description available.
48

Nonlinear System Identification of Physical Parameters for Damage Prognosis and Localization in Structures

Bordonaro, Giancarlo Giuseppe 04 January 2010 (has links)
The understanding of how structural components endure loads, in particular variable loads, is that these components gradually, over some period of time depending on the nature of the loading and the material, develop a microcrack. After some additional time and loading, the microcrack grows to a size that might be detected. Beyond that point, the microcrack propagates in a manner that can be reliably predicted by computer analysis codes. Consequently, one can define different stages for the life of a structural component. These are: 1) the period prior to the formation of a microcrack, 2) the period of microcrack growth, and finally 3) the period of crack growth. To date, structural health monitoring approaches that seek to detect cracks offer no insight into the extent of deterioration occurring in the initial stage that is a precursor to the formation of the microcrack or its growth. However, an approach that would facilitate monitoring the extent of the deterioration that takes place during this stage promises to improve life prediction capabilities of structural components. The challenge, thus, is to develop quantitative assessment of damage accumulation from the earliest stages of the fatigue process and to provide a structure's signature that is dependent of the damage stage. One such signature is the structure's response to forced excitation. The realization of such a goal would help in advancing structural health monitoring procedures using interrogative system identification techniques and determine sensitivities of physical parameters to damage. Additionally, vibration-based spectral quantities are related to physical properties of the structure under test. In this thesis, nonlinear response to parametric excitation is exploited for nonlinear system identification of metallic and composite beam-mass systems before damage initiation through intermediate states of damage progression to failure. Parametric identification procedure combines linear and higher order spectral analysis of vibration measurements and perturbation techniques for the derivation of the approximate solution of the system nonlinear governing differential equation. The possibility of using optical Fiber Bragg Grating sensors technology for damage localization is also assessed. Spectral moments and quantities obtained from fiber optic strain measurements are evaluated near and away from cracks to assess the relation between these moments and cracks. Variations in parameters representing natural frequency, damping and effective nonlinearities for different levels of progressive damage in a beam-mass system have been determined. Their percentage variations have been quantified to establish their sensitivities to damage initiation. The results show that damping and effective nonlinearity parameters are more sensitive to damage conditions than the natural frequency of the first mode. Crack localization is assessed by means of optical fiber technology for a composite beam-mass system. The results show that noise levels in fiber optic signals are high in comparison to strain gage signals. Of particular interest, however, is the observation that the nonlinear response is more pronounced near the cracks than away from them. / Ph. D.
49

Intrinsic Fabry-Perot Interferometric Fiber Sensor Based on Ultra-Short Bragg Gratings for Quasi-Distributed Strain and Temperature Measurements

Wang, Zhuang 02 February 2007 (has links)
The health monitoring of smart structures in civil engineering is becoming more and more important as in-situ structural monitoring would greatly reduce structure life-cycle costs and improve reliability. The distributed strain and temperature sensing is highly desired in large structures where strain and temperature at over thousand points need to be measured simultaneously. It is difficult to carry out this task using conventional electrical strain sensors. Fiber optic sensors provide an excellent opportunity to fulfill this need due to their capability to multiplex many sensors along a single fiber cable. Numerous research studies have been conducted in past decades to increase the number of sensors to be multiplexed in a distributed sensor network. This dissertation presents detailed research work on the analysis, design, fabrication, testing, and evaluation of an intrinsic Fabry-Perot fiber optic sensor for quasi-distributed strain and temperature measurements. The sensor is based on two ultra-short and broadband reflection fiber Bragg gratings. One distinct feature of this sensor is its ultra low optical insertion loss, which allows a significant increase in the sensor multiplexing capability. Using a simple integrated sensor interrogation unit and an optical spectrum based signal processing algorithm, many sensors can be interrogated along a single optical fiber with high accuracy, high resolution and large dynamic range. Based on the experimental results and theoretical analysis, it is expected that more than 500 sensors can be multiplexed with little crosstalk using a frequency-division multiplexing technology. With this research, it is possible to build an easy fabrication, robust, high sensitivity and quasi-distributed fiber optic sensor network that can be operated reliably even in harsh environments or extended structures. This research was supported in part by U.S. National Science Foundation under grant CMS-0427951. / Ph. D.
50

Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor System

Musa, Shah M. 09 September 1997 (has links)
The use of optical fiber sensors is increasing widely in civil, industrial, and military applications mainly due to their, (a) miniature size, (b) high sensitivity, (c) immunity from electro-magnetic interference, (d) resistance to harsh environments, (e) remote signal processing ability, and, (f) multiplexing capabilities. Because of these advantages a variety of optical fiber sensing techniques have evolved over the years having potentials for myriad of applications. One very challenging job, for any of these optical fiber sensing techniques, is to implement a stand alone system with the design and development of all the signal processing models along with the necessary hardware, firmware, and software satisfying the real-time signal processing requirements. In this work we first develop the equations for the system model of the wavelength modulated extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor, and then design and build all the hardware and software necessary to implement a stand-a / Ph. D.

Page generated in 0.0753 seconds