• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 48
  • 25
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 349
  • 349
  • 71
  • 57
  • 50
  • 43
  • 41
  • 38
  • 37
  • 35
  • 35
  • 34
  • 34
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Gas Transport Mechanisms in Polymer-Grafted Nanoparticle Membranes

Tannenbaum, Robert J. January 2023 (has links)
Carbon capture and related gas separation processes are critical tools in our efforts to combat climate change. While polymer membranes are seen as a central construct to achieve these goals, their performance needs further improvement to meet current sustainability objectives. It is in this context that membranes composed of polymer-grafted nanoparticles (GNPs) become highly germane. Chemically tethering the available polymer to the nanoparticle (NP) surface in GNP systems helps mitigate difficulties controlling nanoparticle dispersion common when incorporating inorganic filler NPs into polymer (i.e., mixed matrix membranes (MMMs)). Previous work has shown that gas transport in pure GNP membranes can be strongly enhanced relative to that in the corresponding neat polymer. Additionally, we demonstrated that larger gases display greater degrees of permeability enhancement than smaller ones. This work explores the underlying mechanisms governing the unique gas transport behavior observed in GNPs, with the goal of designing materials possessing superior transport properties that can be known and manipulated a priori. We begin with the identification of transport mechanisms for penetrants of different sizes through an exploration of the heterogenous nature of GNPs. In the limit of moderate-to-high grafting density (the number of chains tethered per unit surface area), the chains are overcrowded near the surface and assume extended conformations termed “polymer brushes”. These brushes comprise two regimes: (1) a dry zone of higher polymer stretching closer to the NP surface and (2) the interstitial spaces in the multibody packing of lower polymer density. We find that larger penetrants such as CH₄, with low solubilities, preferentially sorb into the interstitial spaces in the NP packing prior to diffusing through stretched chains in the dry brush region. The nature of small gas permeability enhancement, on the other hand, is due primarily to enhancements in penetrant diffusion through the stretched chain region close to the NP surface – this is because these gases have high enough solubilities to be present everywhere in the polymer layer. Such solubility differences enable the direct control over penetrant transport through the disparate regions of the polymer brush in mixed-gas environments relevant to operation. Elevated CO₂ content, through increasing feed concentrations at higher pressures, yields increased CH₄ permeability and an associated reduction in mixed-gas selectivity relative to ideal gas analogs. Additionally, high-pressure conditioning with CO₂ evidently dilates the material (due to gas adsorption) in a manner that is apparently not recoverable after a pressure decrease. An alternative handle to control penetrant transport is to manipulate the physical brush structure. Such morphological control is accomplished through variations in preparation methodology; in particular, the rate of solvent evaporation in solution-cast samples plays a significant role in dictating the final structure of the jammed colloidal glass. Utilizing high-pressure conditioning in CO₂ as a concentration quench, we combine morphological control over the brush structure with selective penetrant manipulation to dilate the overcrowded brush regime and enhance gas transport performance. Leveraging the colloidal glass nature of GNPs in this way enables the formation of quasi-equilibrium structures with even greater amounts of “free volume”. The remaining chapters focus on employing our knowledge of the gas transport mechanisms in these materials to aid in future experimental design and to form mechanically resilient materials. Implementing a simulated design-of-experiments loop, we find that a surprisingly minimal amount of experimental data is necessary to effectively model the transport properties of new materials to within practical experimental error. Selectively altering the chemistry of specific chain regions achieved slight enhancement in membrane selectivity while significantly improving material toughness and ultimate utility. Our enhanced understanding of gas transport mechanisms in polymer-grafted nanoparticle membranes will aid in the design and implementation of membranes with tunable separation performance through direct control of how penetrants transport and via morphological changes to the brush structure.
182

Design Principles for Membraneless Electrolyzers for Production of Fuels and Chemicals

Pang, Xueqi January 2023 (has links)
Reducing carbon emissions is a looming challenge that will be required to limit global warming. One approach is to replace energy from fossil fuels with renewable electricity that has low carbon footprints. The continuous decrease of renewable electricity prices makes electrochemical processes very promising for environmentally friendly production of fuels and chemicals. One of the mature electrochemical processes is hydrogen (H₂) production from water electrolysis. If only excess solar/wind electricity is used to power water electrolyzers to produce green H₂, the intermittency of the electricity supply will require low-cost electrolyzer technologies. Emerging membraneless water electrolyzers offer an attractive approach to lowering the cost of H₂ production by eliminating membranes or diaphragms that are used in conventional water electrolyzers. One aim of this dissertation is to understand the performance limits of membraneless water electrolyzers compared to the conventional designs. Another key electrochemical process to reduce carbon emissions is the conversion of carbon dioxide (CO₂) to value-added fuels and chemicals. CO₂ captured from air or flue gas needs to be extracted from carbon capture solution and pressurized before feeding to a conventional CO₂ electrolyzer. In order to avoid these energy intensive steps to make pressurized CO₂, there is a growing interest in developing membrane-based electrolyzers that can directly utilize the carbon capture solution to conduct electrochemical CO₂ conversion. This dissertation also explores a scalable membrane-free electrolyzer design that can convert carbon capture solution to syngas. In Chapter 2, a parallel plate membraneless electrolyzer is used as a model system to demonstrate a combined experimental and modeling approach to explore its performance limits. This modeling framework quantitatively describes the trade-offs between efficiency, current density, electrode size, and product purity. Central to this work is the use of in situ high-speed videography (HSV) to monitor the width of H₂ bubble plumes produced downstream of parallel plate electrodes as a function of current density, electrode separation distance, and the Reynolds number (Re) associated with flowing 0.5 M H₂SO₄ electrolyte. These measurements reveal that the HSV-derived dimensionless bubble plume width serves as an excellent descriptor for correlating the aforementioned operating conditions with H₂ crossover rates. These empirical relationships, combined with electrochemical engineering design principles, provide a valuable framework for exploring performance limits and guiding the design of optimized membraneless electrolyzers. This framework shows that the efficiencies and current densities of optimized parallel plate membraneless electrolyzers constrained to H₂ crossover rates of 1% can exceed those of conventional alkaline electrolyzers but are lower than the efficiencies and current densities achieved by zero-gap polymer electrolyte membrane (PEM) electrolyzers. Chapter 3 presents a packed bed membraneless electrolyzer (PBME) design for which liquid bicarbonate electrolyte flows sequentially through alternating porous flow-through anodes and cathodes. Within this design, hydrogen oxidation at porous anodes is used to produce protons that trigger in situ CO₂ release immediately upstream of porous cathodes, where electrochemical CO₂ reduction generates the desired product and returns the solution pH back towards its inlet value. By using the sequential flow-cell arrangement, the PBME offers the ability to mitigate large concentration overpotentials and non-uniform current distributions that naturally arise during scale-up of conventional membrane-based devices that rely on lateral flow of catholyte parallel to the surface of the electrodes. This study uses in situ colorimetric imaging to highlight the ability of PBME to rebalance pH across electrodes. In addition, results obtained with a multi-cell PBME “stack” demonstrate the scalability of this concept and reveal the ability to increase CO₂ utilization from 12.9% for a single-cell PBME up to 20.5% for a four-cell PBME operated under baseline conditions. Modeling results indicate that current utilization values >80% are theoretically possible for optimized multi-cell PBMEs operated at ambient pressure. Chapter 4 demonstrates a stacked PBME design and an elevated pressure system. Hydrogen oxidation at the anode and hydrogen evolution at the cathode are conducted in this device at pressures up to 5 atm. The pressure of the system can be held at a constant value by the use of a back pressure regulator, and product gases can be collected with a gas sampling bag that’s directly connected to the back pressure regulator. The stereolithography 3D printing technology is used to fabricate components of the PBME from clear resin, which is suitable for the elevated pressure operation. Post-processing of the components makes surfaces transparent for imaging bubble dynamics in the device. Within this system, HOR current density of 120 mA cm-2 can be achieved at different pressures. Finally, Chapter 5 provides concluding remarks and discusses future opportunities and challenges for membraneless electrolyzers for water electrolysis and electrochemical CO₂ conversion.
183

Mammalian herbivory of hardwood seedlings on afforestation areas of the lower Mississippi Alluvial Valley

Harris, Tyler S 11 December 2009 (has links)
The Mississippi Alluvial Valley (MAV) has undergone losses of bottomland hardwood forests due to agricultural conversion. Hardwood establishment on marginal croplands has been proposed to mitigate effects of deforestation and related loss of carbon-capture potential. However, a possible concern with reforestation is low seedling survival from mammalian herbivory. I surveyed two afforested fields in the MAV of northwest Mississippi to assess damage and mortality from four herbivores on nine species of hardwood seedlings (n = 868). Percentage survival of seedlings was 35%. Mortality of seedlings caused by herbivores was: hispid cotton rat (Sigmodon hispidus; 6.45%), rabbit ((Sylvilagus spp.; 1.95%), pine vole (Microtus pinetorum; 2.99%), and white-tailed deer (Odocoileus virginiana; 0.69%). Of surviving seedlings (n = 316), 10.82% were damaged by cotton rats, pine vole (2.99%), rabbit (8.06%), and deer (7.02%). Green ash (Fraxinus pennsylvanica), water oak (Quercus nigra), and Nuttall oak (Quercus nuttallii) had greatest survival.
184

Carbon Pools And Profiles In Wetland Soils: The Effect Of Climate And Wetland Type

Bernal, Blanca 11 September 2008 (has links)
No description available.
185

Three Essays on Application of Optimization Modeling and Monte Carlo Simulation to Consumer Demand and Carbon Sequestration

Kim, Yoon Hyung 02 September 2010 (has links)
No description available.
186

Land Use Change, Forest Carbon Leakage, and REDD

Acosta-Morel, Montserrat 28 July 2011 (has links)
No description available.
187

FORESTS, CARBON, AND BIOMASS ELECTRICITY GENERATION: TWO ESSAYS IN NATURAL RESOURCE ECONOMICS

Meeusen, Karl M. 20 October 2011 (has links)
No description available.
188

Reducing Scope 3 Emissions By Investing In Regenerative Agriculture In Supply Chains

Cain, Stephanie 01 June 2023 (has links) (PDF)
The agricultural industry has an opportunity to shift to a more sustainable practice that helps restore vital topsoil, improve water quality, reduce environmental impact, and sequester atmospheric carbon into the vast soil carbon pool. However, to implement these practices at considerable scale, agricultural producers require access to resources and capital they rarely have and can be difficult to acquire. As a company, investing in regenerative agriculture in supply chains can lead to reduced Scope 3 emissions, more resilient supply chains, and better marketability as an investment fund, an employer, and a brand. Insetting regenerative agriculture can protect supply chains against climate risks and productivity loss, as well as serve as a more secure alternative to carbon credit offsets. Four successful companies, General Mills, Organic Valley, Nestlé, and Nespresso, have been shown to benefit from investing in regenerative agriculture as part of their evolution towards reaching net zero emissions. Based on their strategies, this paper has developed a recommended framework for programming investments for insetting regenerative agriculture. The recommendations rest on six pillars: 1) determining impact, 2) providing direct support to farmers, 3) place-specific strategies, 4) collaboration through partnerships, 5) scalable programming, and 6) educate consumers. Together, these represent a comprehensive approach to insetting that will provide long-term benefits to businesses, suppliers, and the planet.
189

Atlantic Meridional Overturning Circulation instabilities during the last glacial cycle

Zhou, Yuxin January 2022 (has links)
The Atlantic Meridional Overturning Circulation (AMOC) is thought to exert considerable influence over the climate via heat redistribution and carbon storage. Its repeated variations along with the regional and global climate during the last glacial cycle suggest that the state of the AMOC may be roughly divided into “warm,” “cold,” and “off” modes. The three modes correspond to the vigorous deepwater formation in the subpolar North Atlantic, a reduced deepwater formation, and the widespread disruption of the AMOC, respectively. Questions remain about the cause and response of AMOC perturbations in each of the three modes.Reconstruction of the burial flux of ice-rafted debris can resolve questions about the timing and rates of ice sheet calving, which may have been responsible for the “off” mode of the AMOC, given the association of freshwater forcing with AMOC strength. The first chapter quantified the flux of ice-rafted debris in a pair of cores collected from sites in the western North Atlantic. The results show higher ice-rafted debris flux during all Heinrich events and that the western North Atlantic fluxes were higher than the east. The data demonstrate that the Laurentide Ice Sheet played a role in all Heinrich events. A catastrophic last interglacial Laurentide outburst (LILO) event some 125,000 years ago (125 ka) may have contributed to abrupt climate change during the Eemian, when the AMOC was in the “warm” mode. The LILO event was previously proposed to be an analog of the Holocene 8.2 ka event. The second chapter investigated the age and chemical compositions of a layer of red sediments deposited across much of the Northwest Atlantic at 125 ka. The results provide strong support for the occurrence of the LILO event that was analogous to the 8.2 ka event in provenance, timing, and delivery. Little is known about the zonal (east/west) characteristics of the AMOC when in the “cold” mode during the Last Glacial Maximum. Authigenic uranium preserved in sediments is a sensitive redox tracer and can shed light on bottom water oxygen, carbon storage, and water mass distributions. In the third chapter, new and published authigenic uranium data were used to reconstruct deep ocean oxygenation. The compilation shows that lower-than-Holocene oxygen and correspondingly greater respired carbon storage were persistent features of the LGM in the deep North Atlantic. The eastern basin was substantially less well oxygenated than the west. A farther advance and greater infilling in the east of deep waters originating from the Southern Ocean may have caused the zonal difference. Alternatively, deep waters originating from the subpolar North Atlantic may have increased in their residence time in the eastern transect. Questions remain about the flux of freshwater necessary to induce the AMOC to enter the “off” mode. Existing estimates do not agree on the freshwater fluxes associated with Heinrich events. The fourth chapter uses compiled 230Thxs-based mass fluxes in the North Atlantic during the last glacial period to calculate the surge mass fluxes as a measure of the rate of ice-rafted debris deposition. The surge mass fluxes were then converted into freshwater fluxes. Freshwater fluxes for an arbitrarily defined 2000-year period and total freshwater volumes between 20° and 70° N were as high as 0.11 Sv and 6.9 × 1015 m³ during Heinrich event 4 and as low as 0.0012 Sv and 7.6 × 1013 m³ during Heinrich event 3. The relatively low freshwater fluxes we reconstructed for Heinrich events might suggest potentially a high sensitivity of the Atlantic Meridional Overturning Circulation to freshwater perturbations, although the freshwater volumes are in line with previous reconstructions. Our project represents the first time an attempt made to reconstruct the freshwater fluxes and volumes during all Heinrich events of the last glacial period.
190

Biochar production from wood waste for GHG reduction : A case-study from the construction industry / Biokolproduktion från träavfall för minskade växthusgasutsläpp : En fallstudie från byggbranschen

Mirovic, Tara January 2020 (has links)
Skanska, Sweden’s leading project development and construction groups, is increasingly striving for innovative solutions to reduce the carbon footprint of its operations and close the loop on waste materials. The company has expressed interest in investing in a pyrolysis plant in the Stockholm region to produce biochar out of wood waste from construction sites. Biochar, a charcoal-like substance, is produced through thermochemical decomposition of biomass. Recently recognized as a negative emissions technology thanks to its ability to act as a carbon sink, and with its many properties and applications, biochar has in recent years become an increasingly valued product on the Nordic market. However, the magnitude with which biochar production mitigates climate change depends on a number of parameters. The present thesis seeks to assess the potential of biochar production at Skanska and use for urban soils to reduce the company’s GHG emissions, and puts results in perspective with Skanska’s sustainability targets. Using the GHG Protocol for Project Accounting, and through a life-cycle perspective, the thesis examines whether biochar production results in a higher climate gain compared to the continuation of current activities, i.e. the treatment of wood waste through incineration for energy recovery. The results show that reductions in emissions depend on a number of factors including biochar stability, biochar yield, the availability of excess heat from the pyrolysis process and its use for district heating, and most importantly, the type of fuel substituted by waste wood for energy production. Ultimately, the quality, quantity, and geographic distribution of wood waste produced by Skanska determines the viability of this project, and this information should be carefully compiled by the company. / Skanska AB, Sveriges ledande bygg- och projektutvecklingsföretag, strävar alltmer efter innovativa lösningar för att minska koldioxidavtrycket i sin verksamhet och sluta cirkeln för avfallsmaterial. Företaget har uttryckt ett intresse att investera i en pyrolysanläggning i Stockholmsregionen för att producera biokol av träavfall från byggarbetsplatser. Biokol produceras genom termokemisk sönderdelning av biomassa och blev nyligen erkänd som en negativ utsläppsteknologi tack vare sin förmåga att fungera som kolsänka. Med sina många användningsområden och varierande egenskaper har biokol under senare år blivit en allt högre värderad produkt på den nordiska marknaden. Dock spelar flera faktorer roll när möjligheterna för biokolsproduktion att reducera klimatförändringarna ska bedömas. Det här examensarbetet syftar till att utvärdera potentialen för biokolsproduktion inom Skanska och användandet av biokol i urbana jordar för att minska företagets växthusgasutsläpp, samt sätta resultaten i perspektiv med Skanskas hållbarhetsmål. Genom att använda GHG-protokollet för projektredovisning, samt ur ett livscykelperspektiv, undersöker examensarbetet huruvida biokolproduktionen resulterar i en högre klimatnytta jämfört med den nuvarande verksamheten, det vill säga genom förbränning av träavfall för energiåtervinning. Resultaten visar att utsläppsminskningar beror på ett antal faktorer, inklusive biokolets stabilitet, produktionsutbyte, tillgång till överskottsvärme från pyrolysprocessen för användning i fjärrvärmenätet, samt viktigast av allt, vilken typ av bränsle som ersätts av träavfall för energiproduktion. I slutändan är det kvaliteten, kvantiteten samt geografisk tillgång till producerat träavfall för biokolsproduktion som avgör hur väl detta projekt kan genomföras, och denna information bör noggrant sammanställas av Skanska.

Page generated in 0.0286 seconds