• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 48
  • 25
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 349
  • 349
  • 71
  • 57
  • 50
  • 43
  • 41
  • 38
  • 37
  • 35
  • 35
  • 34
  • 34
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

[en] SIMULATION OF CO2 INJECTION FOR EOR AND CARBON STORAGE IN OIL RESERVOIR / [pt] SIMULAÇÃO DE INJEÇÃO DE CO2 EM RESERVATÓRIOS DE PETRÓLEO PARA EOR E ARMAZENAMENTO DE CARBONO

HERBERTH ARTURO VASQUEZ HARO 11 April 2019 (has links)
[pt] O sequestro de dióxido de carbono (CO2) em campos de petróleo já desenvolvidos é considerado uma das opções para mitigar o CO2 antropogênico expelido na atmosfera. O CO2 tem sido utilizado como fluido de injeção em operações de recuperação avançada de petróleo com CO2 (CO2-EOR). Como parte deste processo, o CO2 reage com o óleo que expande seu volume, reduz sua viscosidade e a tensão interfacial CO2/óleo, tornando mais fácil sua recuperação. Enquanto, quantidades significativas de CO2 ficam retidas no reservatório. O objetivo desses projetos é maximizar a produção de óleo, minimizando a injeção de CO2. No entanto, em projetos de sequestro para maximizar a produção de óleo com a maior quantidade de armazenamento de CO2, o gás injetado requer ser maximizado. O objetivo desta pesquisa é entender melhor o potencial tanto para a recuperação avançada de óleo e armazenamento de CO2, por meio da simulação da CO2-EOR. Para atingi-lo propõe-se os seguintes objetivos específicos: (1) caracterização dos fluidos, modelagem do comportamento de fases dos fluidos usando a equação de estado (EOS) para aplicação confiável na simulação composicional; (2) investigar diferentes processos EOR, injeção contínua de gás (CGI) e injeção alternada de água e gás (WAG); e, (3) otimização do desempenho do processo CO2-EOR e a avaliação da capacidade de armazenamento de CO2 durante a produção de óleo. Os seguintes parâmetros foram considerados no estudo da otimização: i) miscibilidade; ii) a injeção cíclica; iii) a taxa de injeção e produção; iv) segregação gravitacional; v) tipo, número e locação dos poços de injeção e produção; e, vi) razão de WAG e tamanhos dos slugs. São necessárias um grande número de simulações para alcançar uma compreensão abrangente e avaliar as diferentes estratégias de injeção e tempo de injeção, em otimização de recuperação de óleo e capacidade de armazenamento de CO2. / [en] Sequestration of carbon dioxide (CO2) into already developed oil fields is considered as one of the option for mitigating anthropogenic CO2 discharge into the atmosphere. In Carbon dioxide Enhance Oil Recovery (CO2-EOR) operations the CO2 has been used as the injection fluid. As part of this process, the CO2 reacts with the oil that increases its volume, reduces its viscosity and interfacial tension CO2/oil, making easier oil recovery. While, significant quantities of CO2 remain sequestered in the reservoir. The goal of such projects is maximizing the oil production and minimizing the CO2 injection. However, in sequestration projects, for maximum oil production with the highest amount of CO2 storage, the injected CO2 requires to be maximized. The goal of this research is to better understand the potential for both enhanced oil recovery and storage of CO2, through the CO2-EOR simulation. To achieve it propose the following specific objectives: (1) the characterization fluids, modeling of fluid phase behavior using equation of state (EOS) for reliable application on the compositional simulation; (2) investigate different EOR processes, continuous gas injection (CGI) and water alternating gas (WAG) injection; and, (3) optimization the CO2-EOR process performance and evaluation of the CO2 storage capacity during oil production. The following parameters were considered in the optimization study: i) miscibility; ii) cyclic injection; iii) injection and production rate; iv) gravity override; v) type, number and location of injection and production wells; and, vi) WAG ratios and WAG slug sizes. A number of simulations are required to achieve comprehensive understanding and evaluate the different injection strategies and injection timing, on optimization of oil recovery and CO2 storage capacity.
262

The role of biochar on greenhouse gas offsets, improvement of soil attributes and nutrient use efficiency in tropical soils / O papel do biochar nas emissões de gases do efeito estufa, melhoria de atributos do solo e eficiência de uso de nutrientes em solos tropicais

Thalita Fernanda Abbruzzini 25 August 2015 (has links)
The solid product of pyrolysis, called \"biochar\" (BC) in the context of improving soil properties as part of agronomic or environmental management, also got into focus as a climate mitigation strategy. The researcher investigated the effects of BC on soil attributes, nitrogen (N) use and GHG emissions. In Chapter 1 the origin of BC was commented. In Chapter 2, BC from sugarcane straw was characterized, and its priming on native SC was evaluated with the treatments: (T1) Soil; (T2) BC; (T3) Soil + BC 10 Mg ha-1; (T4) Soil + BC 20 Mg ha-1; and (T5) Soil + BC 50 Mg ha-1. In Chapter 3, it was evaluated the combination of BC, filter cake (F) and vinasse (V), in relation to soil attributes and carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. The treatments were: (T1) Soil + FC + V; (T2) Soil + FC + V + BC 10 Mg ha-1; (T3) Soil + FC + V + BC 20 Mg ha-1; and (T4) Soil + FC + V + BC 50 Mg ha-1. In Chapter 4, the nitrogen (N) use efficiency was investigated in a pot trial under wheat using NH4[15N]O3 and rates of BC, with the treatments: (T1) Soil, with N, no BC; (T2) Soil, with N, BC 10 Mg ha-1; (T3) Soil, with N, BC 20 Mg ha-1; and (T4) Soil, with N, BC 50 Mg ha-1. BC had C and N contents higher compared to the feedstock. Total K, Mg and P also increased. The lowest CO2 fluxes were for BC, and CO2 from soil and soil + BC did not differ. The highest CO2 - C4 was in the first day, and there were no differences in the CO2 - C3. The BC presents characteristics to improve soil attributes. BC stability is an opportunity to reduce CO2 emissions. In Chapter 3, soil pH, P and base contents increased and Al3+ decreased with BC to sandy soil. Impacts of BC on the CEC were higher in sandy soil. Mineral N decreased with BC. Cumulative CO2 in T1 were higher in sandy and clayey soils than the control. T2 and T3 in sandy soil increased CO2 emissions, but T4 did not differ from T1. BC reduced N2O emissions from sandy and clayey soils relative to T1. BC with FC and V affected pH, CEC, P and base contents. However, those effects were higher in sandy soil. The BC supressed N2O from V and FC. In Chapter 4, BC decreased N2O from N fertilization compared to only N fertilizer. T4 had higher tillering and grain yield. Also, T2 to T4 had higher 100-grain weight and shoot. T3 and T4 had the highest N in grains. The application of BC to soil improves N availability and use efficiency, enhances grain yields and reduces N2O from N fertilization. This study opened encouraging perspectives to the evaluation of sugarcane straw BC to improve soil quality and mitigate GHG emissions. / O produto sólido da pirólise, denominado \"biochar\" (BC) no contexto da melhoria nos atributos do solo como parte do manejo agrícola e ambiental, também tem se destacado na mitigação das mudanças climáticas. O pesquisador investigou os efeitos do BC nos atributos do solo, uso do nitrogênio (N) e emissões de GEE. No Cap. 1 comentou-se a origem do BC. No Cap. 2, caracterizou-se o BC de palha de cana-de-açúcar e avaliou-se o potencial de decomposição do C do solo, com os tratamentos: (T1) Solo; (T2) BC; (T3) Solo + BC 10 Mg ha-1; (T4) Solo + BC 20 Mg ha-1 (T4); e (T5) Solo + BC 50 Mg ha-1. No Cap. 3, avaliou-se a combinação BC, torta de filtro (TF) e vinhaça (V) em atributos do solo e fluxos de dióxido de carbono (CO2), metano (CH4) e óxido nitroso (N2O) nos tratamentos: (T1) Solo + TF + V; (T2) Solo + TF + V + BC 10 Mg ha-1; (T3) Solo + TF + V + BC 20 Mg ha-1; e (T4) Solo + TF + V + BC 50 Mg ha-1. No Cap. 4 investigou-se a eficiência de uso do N num experimento em vasos com trigo usando NH4 [15N]O3 e doses de BC, com os tratamentos: (T1) Solo, com N, sem BC; (T2) Solo, com N, BC 10 Mg ha-1; (T3) Solo, com N, BC 20 Mg ha-1; e (T4) Solo, com N, BC 50 Mg ha-1. Os teores de C e N do BC foram maiores comparado à biomassa. K, Mg e P totais também aumentaram. Os menores fluxos de CO2 foram do BC. O CO2 do solo e solo + BC não diferiram. Observou-se maior CO2 - C4 no primeiro dia de incubação, porém sem diferenças no CO2 - C3. O BC apresenta características para melhorar atributos do solo e reduzir as emissões de CO2. No Cap. 3, pH, P e bases aumentaram e o Al3+ diminuíu com o BC. Os impactos do BC na CTC foram maiores em solo arenoso. O N mineral diminuíu com o BC. O CO2 acumulado no T1 foi maior nos solos arenoso e argiloso comparado ao controle. O T2 e T3 aumentaram o CO2 acumulado do arenoso relativo ao T1, enquanto T4 e T1 não diferiram. O BC reduziu as emissões de N2O pelos solos arenoso e argiloso comparado ao T1. O BC combinado à TF e V afetaram pH, CTC, P e bases do solo arenoso. O BC suprimiu o N2O de solos com V e TF. No Cap. 4, o BC diminuíu as emissões de N2O comparado ao fertilizante N apenas. T4 teve rendimento de grãos superior ao T1. T2 a T4 apresentaram maior peso de 100 grãos e biomassa aérea. T3 e T4 tiveram maior N em grãos. O BC melhora o uso do N, a produção de grãos e reduz o N2O de fertilizante N, abrindo perspectivas para a avaliação do BC de palha de cana-de-açúcar na melhoria da qualidade do solo e mitigar das emissões de GEE.
263

Assessment of carbon sequestration and timber production of Scots pine across Scotland using the process-based model 3-PGN

Xenakis, Georgios January 2007 (has links)
Forests are a valuable resource for humans providing a range of products and services such as construction timber, paper and fuel wood, recreation, as well as living quarters for indigenous populations and habitats for many animal and bird species. Most recent international political agreements such as the Kyoto Protocol emphasise the role of forests as a major sink for atmospheric carbon dioxide mitigation. However, forest areas are rapidly decreasing world wide. Thus, it is vital that efficient strategies and tools are developed to encourage sustainable ecosystem management. These tools must be based on known ecological principles (such as tree physiological and soil nutrient cycle processes), capable of supplying fast and accurate temporal and spatial predictions of the effects of management on both timber production and carbon sequestration. This thesis had two main objectives. The first was to investigate the environmental factors affecting growth and carbon sequestration of Scots pine (Pinus sylvestris L.) across Scotland, by developing a knowledge base through a statistical analysis of old and novel field datasets. Furthermore, the process-based ecosystem model 3-PGN was developed, by coupling the existing models 3-PG and ICBM. 3-PGN calibrated using a Bayesian approach based on Monte Carlo Markov Chain simulations and it was validated for plantation stands. Sensitivity and uncertainty analyses provided an understanding of the internal feedbacks of the model. Further simulations gave a detailed eco-physiological interpretation of the environmental factors affecting Scots pine growth and it provided an assessment of carbon sequestration under the scenario of sustainable, normal production and its effects from the environment. Finally, the study investigated the spatial and temporal patterns of timber production and carbon sequestration by using the spatial version of the model and applying advanced spatial analyses techniques. The second objective was to help close the gap between environmental research and forest management, by setting a strategic framework for a process-based tool for sustainable ecosystem management. The thesis demonstrated the procedures for a site classification scheme based on modelling results and a yield table validation procedure, which can provide a way forward in supporting policies for forest management and ensuring their continued existence in the face of the present and future challenges.
264

Avaliação do potencial de estoque de carbono por Sibipiruna (Poincianela pluviosa var. peltophoroides (Benth.) L.P. Queiróz) na arborização viária de Maringá - PR / Evaluation of potential carbon stock in Sibipiruna (Poincianella pluviosa var. peltophoroides (Benth.) L. P. Queiroz) planted in the urban area in Maringa - PR.

Brun, Flavia Gizele König 14 September 2012 (has links)
O estudo teve por objetivo quantificar o estoque de carbono (C) e biomassa em indivíduos de Sibipiruna (Poincianella pluviosa) na arborização viária de Maringá, PR. A seleção das árvores amostra partiu do banco de dados para supressão da prefeitura municipal. Após fez-se a medição dos indivíduos avaliando-se: altura total (ht), altura da primeira bifurcação (hbif), altura do primeiro galho vivo (hgalho), altura de copa (hc), área de copa (Ac) e diâmetro à altura do peito (DAP). Para as condições do manejo e do meio urbano, consideraram-se: área livre, tipo de poda realizada, fitossanidade, qualidade de copa e tronco. Selecionou-se 24 árvores num intervalo diamétrico de 45,1 a 70,0 cm. Nas árvores abatidas, aferiu-se a biomassa fresca (madeira e casca do tronco, galhos e folhas). Para a copa fez-se uma sub-amostra (10,0 kg) para folhas e galhos finos e retirou-se uma alíquota para determinação do peso seco e teor de C. O peso úmido da copa (folhas e galhos finos), galhos grossos e madeira do tronco foi determinado em balança de carga (10.000,0 kg). Para a amostragem de madeira do tronco, foram retirados 3 discos de 5 cm de espessura na base, DAP e a 90% da altura. A casca foi separada dos discos, pesada e retirada uma alíquota para determinação de massa seca e C. As amostras foram enviadas a Universidade Tecnológica Federal do Paraná - Campus Dois Vizinhos e secas em estufa de circulação e renovação de ar, a 70,0ºC por 72 horas. Na fração madeira do tronco fez-se uma amostra composta dos discos das árvores. Após, as frações foram pesadas e moídas para análise química. Com base nas relações entre a quantidade de C e biomassa com as variáveis dendrométricas, construíram-se modelos de regressão linear para cada fração. Para o inventário de determinação do estoque de C estratificou o perímetro urbano (zonas norte, sul, centro, leste e oeste) onde se sorteou 10,0% dos bairros, totalizando 23 e realizou-se o censo. Na avaliação da influência do meio e manejo sobre o estoque de C e biomassa empregou-se regressão múltipla verificando-se a interdependência. A quantidade total de biomassa acumulada no perímetro inventariado foi de 1.696,4 Mg e de C foi de 734, 9 Mg, e para o perímetro urbano foi de 16.673 Mg de biomassa e 7.695,6 Mg de C estocados. A zona norte apresentou maior representatividade (53,1%) no estoque de C. A compartimentalização do estoque de C foi: galhos>madeira do tronco>folhas>casca do tronco. Os principais fatores que influenciaram o estoque de C foram: poda de levantamento e copa \"vigorosa\" (folhas); poda de levantamento, copa \"vigorosa\" e tronco \"íntegro\"(galhos); presença de fungos e copa \"vigorosa\" (casca); copa \"vigorosa\" e troncos \"injuriados\" (madeira); poda de levantamento, copa \"vigorosa\" e troncos \"injuriados\" (carbono total). Para a construção de protocolos de sequestro de C em árvores viárias é crucial o estudo do crescimento das árvores no meio urbano para observar as respostas do crescimento destas, e implementação de um manejo adequado para um o contínuo incremento do estoque de C nestas. / The study aimed to quantify sibipiruna trees (Poincianella pluviosa) carbon stock (C) and biomass, planted in the streets of Maringa, PR. Sample trees selection was based on the database for trees removal belonging to Maringá city hall. After that, trees were measured, evaluating: total height (Th), height at first fork (Haff), height of the first live branch (Hoflb), canopy height (Ch), crown area (Ca) and diameter at breast height (DBH). For the management and urban environment conditions, the following parameters were considered: open area, type of pruning, plant health, crown and trunk quality. Twenty-four (24) trees were with a DBH ranging from 45.1 to 70.0 cm, were selected. In felled trees, fresh biomass was measured (wood, bark, branches and leaves). For crown sampling, a sub-sample (10.0 kg) for leaves and fine branches was done and an amount of each component was taken for dry weight and C determination. Crown fresh weight (leaves and fine branches, thick branches and wood) was determined to load balance (10,000.0 kg). Wood sampling was done through disks (5.0 cm thickness) removal in the base, at DBH and at 90% of trunk length. Bark was removed from the disks, weighed and an amount aliquot taken for determination of dry matter and C. Samples were sent to Universidade Tecnológica Federal do Paraná - Campus Dois Vizinhos and oven (with air renovation and circulation), at 70.0 º C for 72 hours. In wood fraction, a composite sample from the tree\'s disks was done. After that, the fractions were weighed and milled for chemical analysis. Based on the relations between C amount and biomass and the dendrometric variables, were constructed linear regression models for each fraction. Inventory to determine C stock came from urban area stratification (northern, southern, central, east and west) where 10.0% of these neighborhoods were reflled, totalizing twenty-three (23); and them census was done. When evaluating the environment influence and the management on C stock and biomass, a multiple regression was used verifying interdependence. The total biomass accumulation by in the inventoried area was 1696.4 Mg, with 734.9 Mg C and for the urban area was 16,673.0 Mg of biomass and 7,695.6 Mg C storage. Northern area showed higher representativeness (53.1%) in C stock. The compartmentalization of C stock was: branches> wood > leaves> bark. Main factors that influenced the C stocks were: crown lifting pruning and vigorosus crown (leaves); survey crown lifting pruning, vigorosus crown and intact trunk (branches); fungi presence and vigorosus crown (bark); vigorous crown and trunks injuries (wood); crown lifting pruning, vigorosus crown and trunks injuries (total carbon). For the construction of protocols C sequestration in trees road is crucial to study the growth of trees in the urban environment to observe the growth of these answers, and implantation of appropriate management for a continuous increase in C stock these
265

Estoque de carbono na fitomassa e mudanças nos atributos do solo em diferentes modelos de restauração da Mata Atlântica / Carbon stocks in the phytomass and soil properties changes in distinct Atlantic Forest restoration models

Nogueira Junior, Lauro Rodrigues 04 October 2010 (has links)
O aumento da concentração de CO2 na atmosfera nas últimas décadas e sua relação com o aquecimento global tem sido amplamente debatido nos meios acadêmicos. Paralelamente, o Brasil aparece como um dos grandes responsáveis pela emissão de gases estufa em decorrência do desmatamento. Buscando apoiar ações públicas, privadas e sociais e responder a questões ligadas ao papel de reflorestamentos mistos na absorção de carbono atmosférico e nas mudanças dos atributos do solo, este trabalho objetivou avaliar o estoque de carbono, o desenvolvimento florestal e os atributos edáficos em dois sistemas contrastantes de restauração florestal (Floresta Estacional Semidecidual). Foi analisado um experimento implantado em 1997, em Nitossolo Vermelho e Argissolo Vermelho-Amarelo, avaliando três tratamentos em blocos casualizados, com três repetições em cada sítio: Controle (regeneração natural), Baixa Diversidade (semeadura direta) e Alta Diversidade (plantio por mudas). Dois locais com Floresta Nativa serviram de referência para os atributos do solo. Na camada de 0-40 cm, o Nitossolo tem textura argilosa e boa fertilidade e o Argissolo é arenoso com média fertilidade. Os atributos físicos e químicos do solo apresentaram alterações entre 1998 e 2010, com diferenças entre a Floresta Nativa e os demais tratamentos. Para as duas áreas experimentais, a relação C:N e o carbono da biomassa microbiana dos solos nos modelos de restauração se assemelharam ao Floresta Nativa, indicando que as atuais condições favorecem a ciclagem de nutrientes. Apesar disto, para os atributos químicos do solo avaliados, as diferenças entre a Floresta Nativa e os demais tratamentos continuam a existir, mesmo após 10 anos da implantação, devendo ser gradativo o retorno da fertilidade à condição pré-existente, com influência dos plantios. Os modelos de reflorestamento tiveram diferença significativa quanto ao desenvolvimento florestal. Nos primeiros dez anos, além de incrementar os processos de sucessão natural, o sistema de Baixa Diversidade proporcionou uma maior e melhor edificação da estrutura horizontal e vertical que o de Alta Diversidade, refletida numa maior produção de biomassa seca. O desenvolvimento das árvores no Alta Diversidade foi favorecido em solo de boa fertilidade. Numa análise conjunta, os solos de boa e média fertilidade não se diferenciaram em termos de desenvolvimento arbóreo, que pode estar mais relacionado à alta competição com invasoras. A partir do décimo ano a produtividade primária líquida se estabilizou para o modelo de reflorestamento com baixa diversidade de espécies sobre o solo arenoso de média fertilidade, indicando a necessidade de intervenção. A biomassa arbórea em sítio de média fertilidade com baixa diversidade de espécies nativas se apresentou como um importante reservatório de carbono. Em solo argiloso de boa fertilidade o principal reservatório de carbono foi o abaixo do solo. O reflorestamento com baixa diversidade de espécies arbóreas mostrou um elevado potencial e capacidade de estoque de carbono em sistemas florestais, maior do que o reflorestamento com alta diversidade. Ambos os modelos/técnicas de restauração têm suas vantagens e desvantagens, as quais devem ser consideradas nos processos de mitigação do aquecimento global e da restauração da biodiversidade da Mata Atlântica em larga escala. / The increase of CO2 concentration in the atmosphere over the last decades and its relation to global warming has been largely documented by scientists. In parallel, deforestation in Brazil accounts for most emissions of greenhouse gases. Attempting to support public, private and social actions as well as to answer the questions concerning the role of mixed reforestation in the absorption of CO2 and changes of soil attributes, this study aimed to assess the carbon stock, forest development and soil changes in two different systems of forest restoration. We evaluated an experiment undertaken in 1997, in a red Alfisol and a red-yellow Ultisol, evaluating three treatments in a randomized block design with three replications in each site: Control (natural regeneration), Low Diversity (direct seeding) and High Diversity (seedlings). Two sites with Native Forest were used as reference for the soil attributes. In the first layer (0-40 cm) the Alfisol has a clay texture with good fertility and Ultisol is sandy with medium fertility. The physical and chemical soil properties showed changes from 1998 to 2010 and differences between the Native Forest and the other treatments were evident. For both experimental areas, the C:N ratio of soils in reforestation models is similar to that in the native forest. The increase in carbon in soil microbial biomass indicates that current conditions may favor the decomposition of soil organic matter. For the soil properties evaluated, the differences between the Native Forest and the other treatments still exist and leading to a gradual return of fertility to the pre-existing condition, influenced by plantations. The forestry development had significant differences among the reforestation models. In the first ten years, besides increasing the processes of natural succession, the lower diversity model provided a better horizontal and vertical structure than the high diversity model, reflected in increased biomass production. The development of trees in the high diversity model was favored in soil of good fertility. In a pooled analysis, the high and medium fertility soil do not differ in terms of tree development, which may be more related to weed competition. After the tenth year, the net primary production has stabilized in the low diversity restoration model on the medium fertility sandy soil, requiring management intervention. The tree biomass in the site of medium fertility with low diversity of native species is presented as a major carbon pool. In clayey soil of good fertility the main carbon pool is underground. Reforestation with low diversity of tree species has a high potential and capacity of carbon stocking in forest ecosystems, higher than that of high diversity reforestation model. Both models and restoration techniques have advantages and disadvantages, which should be considered in the process to mitigate global warming and to restore biodiversity of the Atlantic Forest on a larger scale.
266

Environmental and Adaptive Buffers that Mediate the Response of Subalpine Ecosystems to Environmental Change

Conner, Lafe G. 01 June 2015 (has links)
This document reports the results of 4 studies of subalpine ecosystem ecology, describing ways that spatial heterogeneity in soils and plant communities mediate ecosystem responses to environmental change. Ecosystem responses to environmental change are also mediated by regional climate patterns and interannual variability in weather. In the first chapter we report the results of an experiment to test for the mediating effects of associational resistance in a forest community that experienced wide-spread beetle kill. We found that Engelmann spruce were more likely to survive a beetle outbreak when growing in low densities (host dilution) and not through other types of associational resistance that relate to higher tree-species richness or greater phylogenetic diversity of the forest community. In the second chapter we report the effects of early snowmelt on soil moisture in subalpine meadow and aspen communities. We found that soil organic matter, soil texture, and forest cover mediated the effects of early snowmelt and were more important drivers of growing-season soil moisture than was snow-free date. In the third chapter we report the effect of early snowmelt on growth and seed production of early-season and midsummer herbaceous species. We found that the primary effect that snowmelt timing had on plant growth was through its effect on species distribution. Changes in the timing of snowmelt had limited effect on the growth, flowering, and seed count of species after they were established. In the final chapter, we report the effect of early snowmelt on soil respiration, microbial biomass, dissolved organic carbon and soil organic carbon. We found that early snowmelt resulted in warmer soil temperatures compared to neighboring snow-cover plots, and that microbial biomass and soil respiration showed no signs of a snowmelt legacy effect during the growing season. Soil organic carbon in rapid and slow-turnover pools was affected more by plant community than by snowmelt timing, and the primary drivers of soil respiration during the snow-free period were first soil organic matter and second soil temperature. Taken together, this dissertation reports our findings that subalpine ecosystems are resilient to environmental change in part because organisms in these systems are adapted to environmental conditions that are highly variable between sites, seasons, and years.
267

An Ecosystem Approach to Dead Plant Carbon over 50 years of Old-Field Forest Development

Mobley, Megan Leigh January 2011 (has links)
<p>This study seeks to investigate the dynamics of dead plant carbon over fifty years of old-field forest development at the Calhoun Long Term Soil-Ecosystem Experiment (LTSE) in South Carolina, USA. Emphasis is on the transition phase of the forest, which is less well studied than the establishment and early thinning phase or the steady state phase. At the Calhoun LTSE, the biogeochemical and ecosystem changes associated with old field forest development have been documented through repeated tree measurements and deep soil sampling, and archiving of those soils, which now allow us to examine changes that have occurred over the course of forest development to date.</p><p> In this dissertation, I first quantify the accumulation of woody detritus on the surface of the soil as well as in the soil profile over fifty years, and estimate the mean residence times of that detrital carbon storage. Knowing that large accumulations of C-rich organic matter have piled onto the soil surface, the latter chapters of my dissertation investigate how that forest-derived organic carbon has been incorporated into mineral soils. I do this first by examining concentrations of dissolved organic carbon and other constituents in soil solutions throughout the ecosystem profile and then by quantifying changes in solid state soil carbon quantity and quality, both in bulk soils and in soil fractions that are thought to have different C sources, stabilities, and residence times. To conclude this dissertation, I present the 50-year C budget of the Calhoun LTSE, including live and dead plant carbon pools, to quantify the increasing importance of detrital C to the ecosystem over time.</p><p>This exceptional long term soil ecosystem study shows that 50 years of pine forest development on a former cotton field have not increased mineral soil carbon storage. Tree biomass accumulated rapidly from the time seedlings were planted through the establishment phase, followed by accumulations of leaf litter and woody detritus. Large quantities of dissolved organic carbon leached from the O-horizons into mineral soils. The response of mineral soil C stocks to this flood of C inputs varied by depth. The most surficial soil (0-7.5cm), saw a large, but lagged, increase in soil organic carbon (SOC) concentration over time, an accumulation almost entirely due to an increase of light fraction, particulate organic matter. Yet in the deepest soils sampled, soil carbon content declined over time, and in fact the loss of SOC in deep soils was sufficient to negate all of the C gains in shallower soils. This deep soil organic matter was apparently lost from a poorly understood, exchangeable pool of SOM. This loss of deep SOC, and lack of change in total SOC, flies in the face of the general understanding of field to forest conversions resulting in net increases in soil carbon. These long term observations provide evidence that the loss of soil carbon was due to priming of SOM decomposition by enhanced transpiration, C inputs, and N demand by the growing trees. These results suggest that large accumulations of carbon aboveground do not guarantee similar changes below.</p> / Dissertation
268

Potential value extraction from TxDOT’s right of way and other property assets

Paes, Thiago Mesquita 16 February 2012 (has links)
Many Departments of Transportation (DOTs), including Texas Department of Transportation (TxDOT), have been challenged by inadequate funding from traditional federal and state fuel taxes, increasing construction cost, aging highway system, traffic congestions, and recent natural disasters, compromising their primary mission to provide safe vehicle transportation routes with adequate capacity. Furthermore, environmental awareness and sustainability concept have strengthened and sparked debates in Congress, culminating with several regulatory policies that affect, inclusively, transportation projects. This scenario has prompted DOTs to pursue innovative ways to reduce maintenance cost (at minimum) and generate revenue (at maximum) exploiting their assets, and to meet the new regulations. Likewise, the Center of Transportation Research at The University of Texas at Austin undertook a comprehensive research study to identify and determine when, where, and under what circumstances TxDOT should pursue the implementation of which Value Extraction Application (VEA), and how to effectively recognize and involve key stakeholders. As a result, 11 VEAs were identified. In addition, a methodological framework – embedding a multi-attribute criteria analysis matrix as the decision making method - was devised to guide TxDOT throughout the process of identifying, evaluating, comparing, and selecting the most appropriate VEA while a list of stakeholders associated with each VEA and a stakeholder analysis framework was provided to help TxDOT to identify and reach out key stakeholders. / text
269

The economic potential of the Quebec cropping sector to sequester carbon in agricultural soils /

Morand, Hugues January 2003 (has links)
This research simulates the response of the Quebec cropping sector to the introduction of carbon credit revenue which could be made available through the implementation of a greenhouse gas emissions trading and offset system in Canada. Eligible carbon sequestering practices investigated in the simulations include adoption of moderate tillage and no-till as well as the conversion to a permanent cover crop. Monetary demand for greenhouse gas emissions offsets from the cropping sector is endogenized in the objective function of the Canadian Regional Agriculture Model (CRAM) which has been modified to account for the simulations and for the disaggregation of the single crop region of Quebec into eleven sub-regions. Changes in the cropping sector induced by the introduction of seven different carbon price levels, ranging from $1/t CO2 to $100/t CO2, are compared to a baseline. Variables covered in the simulation results include: relative profitability of carbon sequestering crops/technology; adoption rates of moderate tillage and no-till; carbon sequestration levels; carbon credit revenue; cropping pattern, crop production and livestock. / Results indicate that carbon sequestration in agricultural soils could only contribute a minor share of the total emission reduction in Quebec, even with very high carbon price levels. At a carbon price of $15/t CO2, it is estimated that changes in tillage practices and permanent cover would result in an additional 12,328 t CO2 per year sequestered by the cropping sector in Quebec. However, some regions display higher adoption rates of carbon sequestering practices than other regions and appear to be more responsive to the price incentive. The introduction of a monetary demand for GHGE offsets from the cropping sector induces some changes in terms of cropping pattern and crop production level, while it has almost no impact on the livestock sector.
270

In search of standards for forest carbon offset projects in BC : a review of Georgian and Californian state standards

Iverson, Chad 02 December 2009 (has links)
Forests represent both, one of the strongest drivers of, and solutions to, the rapid shift in the earth’s climate. Integrating the use of forests as a cost effective solution into emerging global carbon markets however has proven extremely difficult. The incentive for companies to utilize carbon credits as a means to offset emissions is heavily dependent upon the credibility of the project that created it. The difficulty proving the credibility of forest projects is largely due to the inherent variation associated with forest environments. British Columbia’s pine beetle epidemic provides an extreme example of just how quickly vast carbon sinks can suddenly become sources. As such, the creation of standards to ensure the security of carbon sequestered by forest projects has proven to be instrumental in encouraging their acceptance into the market. British Columbia has recognized that its forests play an integral role in its contribution to the global carbon cycle. As a result, heavy consideration is being made as to how this resource may be integrated as a source of carbon offsets for its own Cap-and-Trade market. This will mean establishing specific standards for forest projects in a BC context. This report reviews two regional standards from the states of Georgia and California, which could be applied as templates for a set of BC specific protocols for forest carbon sequestration projects. It is intended that through a comparison and analysis of these standards that potential problems faced in applying similar standards here will be identified.

Page generated in 0.1066 seconds