• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 10
  • 9
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 20
  • 18
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Saltwater Intrusion and Vegetation Shifts Drive Changes in Carbon Storage in Coastal Wetlands

Charles, Sean Patrick 27 June 2018 (has links)
Coastal wetlands protect coastlines through efficient storage of organic carbon (OC) that decreases wetland vulnerability to sea level rise (SLR). Accelerated SLR is driving saltwater intrusion and altering vegetation communities and biogeochemical conditions in coastal wetlands with uncertain implications. We quantified changes in OC stocks and fluxes driven by 1) saltwater and phosphorous intrusion on freshwater and brackish marshes, 2) vegetation along an experimental saltmarsh to mangrove gradient, 3) saltwater intrusion and vegetation change across a marsh to mangrove ecotone, and 4) vegetation change and mangrove forest development along a marsh to mangrove ecotone. Increasing salinity in freshwater marshes decreased root biomass and soil elevation within one year. In brackish marshes, increased salinity decreased root productivity and biomass and increased root breakdown rate (k), while added salinity did not increase elevation loss. In our experimental marsh-mangrove ecotone, mangrove vegetation promoted higher organic carbon (OC) storage by increasing above and belowground biomass and reducing organic matter k. However, mangroves also increased belowground k, and decreased allochthonous marine subsidies, indicating the potential for OC storage trade-offs. In the Southeast Everglades, we identified strong interior-coastal gradients in soil stoichiometry and mangrove cover. Interior freshwater soil conditions increased k, while total soil OC stocks decreased toward the coast indicating that saltwater intrusion is driving large scale soil OC loss. In the southeast Everglades, mangrove expansion increased root biomass and root productivity, but did not mitigate the overall loss of OC stocks toward the coast. Similarly, in the southwest Everglades, saltwater intrusion drove a decrease in soil OC. However, mangrove encroachment drove a rapid recovery and increased OC stocks. Mangrove encroachment doubled aboveground biomass within the last ten years, increased it 30 times in the last 30 years, and doubled belowground biomass after 20 years. Our research shows that 1) moderate saltwater intrusion without mangrove encroachment will lead to a loss in OC stocks and potentially lead to wetland elevation loss and submergence, 2) in the absence of a change in saltwater intrusion, mangrove expansion can enhance OC storage 3) mangrove expansion can mitigate OC loss during saltwater intrusion, but this pattern depends on mangrove recruitment and ecosystem productivity.
42

Reforestation : the dynamics of safe, efficient CO_2 storage

HOSOKAWA, Roberto Tuyoshi, YAMAMOTO, Hiroyuki, ROCHADELLI, Roberto, KLOCK, Umberto, REICHER, Fany, BOCHICCHIO, Renato 12 1900 (has links) (PDF)
農林水産研究情報センターで作成したPDFファイルを使用している。
43

The role of marine macrophytes in providing essential ecosystem services: Their relative contribution and how services are impacted by eutrophication

Schmidt, Allison Louise 06 December 2012 (has links)
Most coastal ecosystems are dominated by marine macrophytes that deliver a range of ecologically and economically important services such as carbon and nitrogen cycling and storage, and habitat provision to a range of associated species. The relative contribution of these services among different vegetated habitats, however, and their alteration due to anthropogenic stressors is little known. In this thesis, I first examined the within and between ecosystem structure and services of eelgrass (Zostera marina) and rockweed (Ascophyllum nodosum) beds in Atlantic Canada. Both habitats significantly enhanced the overall abundance and diversity of associated species, whereas differences in the spe-cies assemblages were attributed to differences in canopy structure within and between habitats. Changes in the canopy structure of the foundation species will affect associated food webs and ecosystem services. Next, I used large-scale field surveys to examine the effects of eutrophication on the structure and services of eelgrass beds. As eutrophication increased, plant dominance shifted from eelgrass to macroalgae and phytoplankton at a regional scale. The faunal community showed increases in filter feeders, detritivores and some herbivores, while sensitive species declined. These faunal changes can be linked to enhanced food availability and predation refuge offered by increased phytoplankton and opportunistic macroalgae. However, the loss of eelgrass and sensitive species highlight the negative consequences of eutrophication on eelgrass ecosystems and the services they provide. I also reviewed the global carbon and nitrogen storage and habitat services of mangroves, salt marshes, seagrass meadows and macroalgal beds. Despite only occupying 0.7% of the ocean area, together these ecosystems make up 12% of the oceanic carbon stock thereby playing an important role in global carbon and nitrogen storage. Moreover, these macrophyte habitats enhanced species richness and abundance of associated fauna and juvenile fishes. Overall, my findings indicate that each macrophyte habitat has its strengths yet all are essential in providing the full range of ecosystem services. Increasing human impacts along the coasts, however, are threatening macrophyte ecosystems worldwide, and their further decline will impair the provision of important services and human well-being. Lastly, I discuss the implications of my work for management and conservation.
44

[en] NUMERICAL MODELING OF CO2 INJECTION IN SALINE AQUIFERS, AIMING TO EVALUATE MINERAL STORAGE / [pt] MODELAGEM NUMÉRICA DA INJEÇÃO DE CO2 EM AQUÍFERO SALINO, OBJETIVANDO AVALIAR O APRISIONAMENTO MINERAL

ROBERTA DOMINGOS RODRIGUES 13 December 2017 (has links)
[pt] Para contribuir com a mitigação das mudanças climáticas, tecnologias com o intuito de promover a redução de emissões dos Gases de Efeito Estufa, como é o caso do dióxido de carbono, tem obtido grande destaque nas pesquisas ultimamente. Uma das alternativas para impedir que todo esse carbono seja liberado para a atmosfera é reinjetar o CO2 nos próprios reservatórios ou em outras formações geológicas próximas. Neste sentido, esta dissertação apresenta uma tecnologia relacionada à captura e armazenamento geológico de CO2 e avalia o processo de injeção de dióxido de carbono em aquíferos salinos. O principal objetivo é avaliar o processo de injeção de dióxido de carbono em aquíferos salinos de rochas carbonáticas, numa escala de tempo de três mil anos, para avaliar o aprisionamento do CO2 em suas diferentes formas, incluindo o armazenamento mineral. Tal estudo também considera na modelagem, as reações químicas entre os componentes na fase aquosa e a difusão molecular do dióxido de carbono na fase aquosa, assim como as reações químicas de dissolução e precipitação mineral. A partir das informações obtidas em literatura, estabeleceu-se as premissas para a simulação do caso base, e gerou-se casos derivados variando individualmente cada uma das seguintes propriedades: difusividade, salinidade, pH e temperatura, no qual avaliou-se a contribuição de cada uma delas nas diferentes formas de armazenamento do CO2. Por fim, concluiu-se que a mineralização do CO2 iniciou-se após aproximadamente 200 anos de simulação. No entanto, devido às lentas taxas da reação de precipitação mineral, a predominância do armazenamento do CO2 ainda foi na forma dissolvida. As propriedades variadas que contribuíram para o aumento do armazenamento mineral de CO2, que é considerada a forma mais estável, foram: menor fator de difusividade, maior salinidade do aquífero, pH básico (pH igual a 8,0) e maior temperatura. / [en] In order to contribute to climatic changes mitigation, technologies aiming the reduction of pollution gases emissions, such as carbon dioxide, have been highlighted in recent researches. One of the alternatives to prevent all this carbon from being released into the atmosphere is to reinject CO2 into reservoirs or in other nearby geological formations. In this sense, this work presents a technology related to the capture and geological storage of CO2 and evaluates the carbon dioxide injection process into saline aquifers. The main objective is to evaluate the carbon dioxide injection process in saline aquifers of carbonate rocks, in a time scale of three thousand years, to evaluate the storage mechanism of CO2 in its different forms, including mineral storage. Such study also considers in the modeling, the chemical reactions between the components in the aqueous phase and the molecular diffusion of the carbon dioxide in the aqueous phase, as well as the chemical reactions of mineral dissolution and precipitation. From the research made and the information gathered in the literature, the premises for the simulation of the base case were established, and derivative cases were generated by individually varying each of the following properties: diffusivity, salinity, pH and temperature, in which the contribution of each property was evaluated on the different CO2 storage forms. Finally, it was concluded that the injected CO2 mineralization process started after approximately 200 years of simulation. However, due to slow rates of the mineral precipitation, the CO2 storage in the dissolved form was still predominant. The different properties that contributed to increase the CO2 mineral storage, which is considered the more estable one, were: lower diffusivity factor, higher aquifer salinity, basic pH (pH equal to 8.0) and higher temperature.
45

Effect of Conservation Agriculture on Organic Matter Stratification and Hydro-Physical Properties of Soil Under Intensive Cereal-based Cropping Systems

Patra, Sridhar 13 May 2022 (has links)
Although, the potential of management induced changes of soil organic matter, soil hydraulic properties (SHPs) and soil physical quality has been studied particularly in relation to tillage, few studies have evaluated combined effect of tillage, crop residue retention and cropping sequence, which are essential components of conservation agriculture (CA), on stratification and storage of soil organic matter, its effect on near-saturated soil hydraulic properties and soil physical quality in intensive cereal based irrigated cropping systems. Hence, the present study critically analyses the effects of CA on organic matter and hydro-physical properties of soil in a long-term CA field trial in NWIGP, India, which is one of the most fragile agro-ecosystems in the world. The objectives were (I) to investigate the stratification of soil organic carbon (SOC), total nitrogen (TN), C/N ratio and evaluate SR as an indicator of storage of SOC and TN and soil quality for different CA practices, (II) to assess the long-term effect of CA practices and short-term effect of crops on near-saturated soil hydraulic conductivity and water transmission properties, and (III) to assess the effect of CA practices on soil physical quality using capacitive and dynamic indicators. There were four treatments: (1) conventionally tilled rice-wheat cropping system (CT-RW), (2) reduced till CA-based rice-wheat-mungbean system (RT-RWMB), (3) no-till CA-based rice-wheat-mungbean system (NT-RWMB), and (4) no-till CA-based maize-wheat-mungbean system (NT-MWMB). To achieve these objectives, soil bulk density, SOC and TN were measured in an increment of 5 cm up to 30 cm soil depth. Furthermore, the effects of CA were also evaluated in terms of soil hydro-physical properties. Soil physical properties such as bulk density and soil aggregate distribution were evaluated in two cropping seasons along with near saturated hydraulic properties. Steady state infiltration rates were obtained at four pressure heads by hood infiltrometer consecutively over two cropping seasons, i.e. during harvest season of rice/maize (October 2017) and maximum crop growth stage of wheat (February 2018). Data were analysed in terms of soil hydraulic conductivity, k(h), flow weighted mean pore radius (r0), hydraulically active porosity (ε) and threshold pore radius (rbp), a new pore measure indicative of macropore stability derived by substituting soil’s bubble pressure in the capillary equation. Finally, the effects of CA on soil physical quality in terms of both capacitive and dynamic indicators, derived from soil moisture retention curve and field measured hydraulic conductivity, respectively, were assessed and related with crop yield to infer which indicator better represented the soil physical quality and its effect on crop yield under irrigated intensive cereal based cropping systems. Results showed that CA had profound impacts on distribution of SOC and TN in the soil profile. Significantly higher proportion of both SOC and TN were observed in the top soil in the CA-based treatments as compared with conventional intensive tillage-based treatment. The mean stratification ratio of both SOC and TN were found > 2 in CA-based treatments whereas the same was < 2 in intensive tillage-based treatment. Storage of SOC and TN in the 0-30 cm were found higher in CA-based treatments as compared with the intensive tillage-based treatment. These results on vertical distribution and storage of SOC and TN indicated a relatively better soil carbon sequestration and soil quality in CA-based treatment. The higher concentrations and storage of soil organic matter in CA-based treatments were, however, not translated into significantly (p < 0.05) lower bulk density due to probable compaction effect of no-tillage and harvest machinery and hydraulic pressure exerted by the flooded irrigation water. However, the increased soil organic matter in the top soil in CA-based treatments improved the soil aggregation significantly which helped in enhancing soil structural quality. Improvement in soil structure was reflected in relatively higher near saturated hydraulic conductivity in CA-based treatments. Irrespective of crop seasons, higher k(h) was observed under CA due to formation of macropores with better continuity, greater size and numbers as compared with conventional intensive tillage treatment. Moreover, higher r0 values were observed for a given k(h) for CA treatments suggesting that interaggregate pores are the dominant pathways of infiltration in CA. A relatively smaller temporal variation of rbp was indicative of a more stable macropore system established by rice-based CA as compared with maize-based CA. CA also enhanced hydraulically active macropores as compared with intensive tillage based conventional agriculture. Results also indicated that crops play an important role in relative distribution of the hydraulically active macropores in the root zone. The impact of CA on soil organic matter stratification and soil hydraulic properties were found to be expressed in terms of changes in soil physical quality. Soil moisture retention curves and pore size distributions under different treatments suggested higher soil water storage in structural pores in CA as compared with intensive tillage-based conventional agriculture. The impact of CA on soil physical quality and consequent effect on crop yield was found to be more expressed through dynamic indicators such as hydraulically active porosity rather than capacitive indicators derived from soil moisture retention curve. Overall, this study reveals that conservation agriculture has great potentials to reverse the intensive tillage induced degradation of soil resources in Indo-Gangetic Plains of India by improving the soil hydro-physical properties and soil physical quality.:Table of Contents Declaration i Declaration of Conformity ii Acknowledgements iii Table of Contents v List of Figures vii List of Tables xi List of Symbols, Abbreviations and Acronyms xiv Abstract xvii 1 Introduction and Background 1 1.1 General Overview 1 1.2 Statement of the Research Problem 5 1.3 Objectives 6 1.4 Research Flow and Chapter Description 7 2 Materials and Methods 9 2.1 Study Area Description 9 2.1.1 Study site 9 2.1.2 Climate 9 2.1.3 Soil 10 2.1.4 Treatments 10 2.1.5 Field Campaigns and Measurement/Analysis 14 2.2 Methods and Theoretical Considerations 14 2.2.1 Soil Sampling and Analysis 14 2.2.1.1 Calculation of Stratification Ratio 15 2.2.1.2 Calculation of SOC and TN Storage 15 2.2.1.3 Aggregate Size Distribution 16 2.2.2 Infiltration Measurements 16 2.2.3 Soil Moisture Retention Experiments 17 2.2.4 Derivation of Hydraulic Properties from Steady State Infiltration Rates 18 2.2.4.1 Near-Saturated Hydraulic Conductivity 18 2.2.4.2 Flow Weighted Mean Pore Radius 20 2.2.4.3 Equivalent Threshold pore Radius 21 2.2.4.4 Hydraulically Active Porosity 21 2.2.5 Determiation of Soil Moisture Charachtristics and Pore Size Distribution 22 2.2.6 Derivation of Soil Physical Quality Indicators 23 2.3 Statistics 25 3 Results and Discussion 26 3.1 Stratification and Storage of Soil Organic Matter 26 3.1.1 Bulk Density 26 3.1.2 Concenrations of SOC 27 3.1.3 Concentrations of TN 28 3.1.4 C/N Ratio 29 3.1.5 Stratification Ratio of SOC, TN and C/N Ratio 30 3.1.6 Storage of SOC and TN 33 3.1.7 Discussion 34 3.1.8 Summary of Results 39 3.2 Soil Hydro-Physical Properties 40 3.2.1 Soil Physical Properties 40 3.2.2 Near-Saturated Hydraulic Conductivity 43 3.2.3 Soil Pore Characteristics-Conductivity Relationship 47 3.2.4 Hydrailically active Porosity 51 3.2.5 Summary of Results 54 3.3 Soil Physical Quality (SPQ) 56 3.3.1 Soil Moisture Retention Curve (SMRC) 56 3.3.2 Soil Pore Size Distribution (SPSD) 58 3.3.3 Capacitive Indicators 59 3.3.4 Dynamic Indicators 60 3.3.5 Relationship between capacitive indicators of SPQ with dynamic indicators of SPQ and long-term crop yield 60 3.3.6 Relationship between dynamic indicator of SPQ (hydraulically active porosity) and Long-term Crop Yield 62 3.3.7 Summary of Results 64 4 Synthesis and Conclusions 65 5 Implications and Outlook 69 References 71
46

Variations in Carbon Fluxes Lead to Resilience of Carbon Storage in New England Forests Affected by the Hemlock Woolly Adelgid at a Centennial Time Scale

Lemos, Poliana Costa 21 September 2015 (has links)
Since the 1980s, hemlock-dominated forests (Tsuga canadensis) of central New England have been increasingly infested by the invasive pest hemlock woolly adelgid (HWA, Adelges tsugae), predominantly resulting in its replacement by black birch-dominated forests (Betula lenta). To date there has been no long-term empirical analysis of HWA effects on forest carbon (C) cycling due to forest transition from hemlock to black birch. To address this question, I measured the C pools in five stand types at varying ages and stages of HWA infestation in Massachusetts and Connecticut. I also measured C fluxes in aboveground net primary production (ANPP) and soil respiration, and studied the drivers of these fluxes viz. litter production, rates of foliar decomposition, soil exoenzyme activity, temperature sensitivity of soil respiration and nitrogen (N) cycling. The mass of C stored in recovering forests was resilient to HWA infestation but the location of these stocks varied among stand types. There was a transition of C from live biomass in healthy, unaffected secondary hemlock forests to coarse woody debris (CWD) in recently girdled forests intended to simulate the effect of HWA on hemlock loss. Twenty years post-HWA infestation, however, ANPP was very high and there was a large increase in biomass-C pools in aggrading black stand types. C pools in mature, secondary black birch stand types ~135 years since pastureland abandonment were as large as those in primary hemlock stand types ~235 years of age, suggesting recovery of C storage within one century of HWA infestation. Soil respiration rates were positively correlated with inputs of hardwood leaf litter, fine root biomass and exoenzyme activity. Stand-type variations in ANPP were positively correlated with annual N requirements and N uptake from the soil. Nitrogen-use efficiency was highest in the girdled and post-HWA infestation stand types where ANPP was dominated by wood production which has a wide C:N ratio. Similar trends were found in soil respiration, but not to the same degree as that of ANPP. Collectively, my results indicate that southern New England forests C storage is highly resilient to the HWA-induced losses of hemlock, suggesting that these ecosystems will continue to be sinks for atmospheric carbon dioxide.
47

Stockage de carbone et dynamique des matières organiques des sols en agroforesterie sous climat méditerranéen et tempéré / Carbon storage and soil organic matter dynamics under mediterranean and temperate agroforestry systems

Cardinael, Rémi 27 November 2015 (has links)
Les systèmes agroforestiers stockent du carbone dans la biomasse des arbres. Cependant leur intérêt ne se limite pas à ce carbone stocké sous forme de bois. En effet, les arbres produisent de grandes quantités de litières, et apportent également du carbone dans les horizons profonds du sol par la mortalité et l’exsudation racinaire. Or, les sols agricoles, ayant de très faibles teneurs en matière organique, ont un potentiel de stockage en carbone bien plus important que les sols forestiers. A ce jour, il n’existe pratiquement pas de travaux permettant d’avoir une estimation de l’impact des arbres agroforestiers sur le carbone du sol. La plupart des études sont en effet menées sur le stockage de carbone dans la biomasse aérienne des arbres. Une étude a ainsi estimé qu’en climat tempéré et pour des densités comprises entre 50 et 100 arbres/ha, le stockage de carbone serait compris entre 1.5 et 4 tC/ha/an, ce qui est très important comparé au potentiel de stockage d’autres systèmes de culture. On se propose donc dans ce travail de contribuer significativement à la connaissance sur les possibilités de stockage de C dans les sols en agroforesterie. Tout d’abord, nous quantifierons les stocks de C dans les parcelles agroforestières et les comparerons aux témoins agricoles. Nous étudierons également l’hétérogénéité spatiale de ces stocks, sous la ligne d’arbres ou sous la culture intercalaire, et ce à différentes profondeurs. Dans un deuxième temps, nous étudierons les entrées de carbone au sol, notamment via la mortalité racinaire des arbres. Puis, nous étudierons les processus liés à la stabilisation de ce carbone dans les horizons profonds du sol. Enfin, nous chercherons à savoir si l’apport de carbone frais dans les horizons du sol ne pourrait pas entraîner une minéralisation d’une partie du carbone stable du sol, phénomène connu sous le nom du priming effect, et qui pourrait jouer un rôle non négligeable dans le bilan de carbone de ces systèmes. La modélisation sera utilisée afin d’estimer le stockage de carbone sur le long terme. L’étude sera menée dans un contexte de système de culture méditerranéen, sur un site expérimental d’exception. L’analyse mécaniste fournira le cadre conceptuel pour la compréhension de la dynamique du C dans d’autres systèmes agroforestiers à l’avenir. / Agroforestry is a land use type where trees are associated with crops and/or animals within the same field. This agroecosystem could help mitigating climate change, and also contribute to its adaptation. The goal of this thesis was to evaluate the potential of soil organic carbon storage under agroforestry systems. This study was performped at the oldest experimental site in France, a trial supervised by INRA since 1995, but also at farmers' fields. Soil organic carbon stocks were compared between agroforestry and agricultural plots, down to 2 m soil depth. All organic inputs to the soil were quantified (tree roots, leaf litter, crop roots and residues). The stability of additionnal stored carbon was caracterised with soil organic matter fractionation, and soil incubations. A model of soil organic carbon dynamic was described in order to better undrestand this dynamic in agroforestry, especially in deep soil layers. This study revealed the interest and the potential of agroforestry systems in increasing soil organic carbon stocks, with accumulation rates of 0.09 to 0.46 t C ha -1 yr -1. It also reveals the role of tree rows in this storage, and the importance of carbon inputs from root mortality. However, it raises concerns about the stability of this storage.
48

From trees to soil: microbial and spatial mediation of tree diversity effects on carbon cycling in subtropical Chinese forests

Beugnon, Rémy 09 February 2022 (has links)
The loss of biodiversity is affecting all ecosystems on Earth, one of the greatest threats to biodiversity being climate change. Forests have been highlighted for the potential to mitigate climate change by storing carbon above- and belowground in soils. In this thesis, I studied the effects of tree diversity on carbon cycling in subtropical Chinese forests. I aimed to explore the mechanisms behind tree diversity effects on carbon cycling by focusing on microbial-based processes and the consequences of tree diversity-induced spatial heterogeneity. First, my colleagues and I tested the effects of tree diversity on litterfall spatial patterns and the consequences for litter decomposition and quantified the importance of microbial community in decomposition processes. Second, we explored the effects of tree diversity on relationships between soil microbial facets and soil microbial functions. Third, we tested the effects of tree diversity on soil microbial biomass and carbon concentrations, and their mediation by biotic and abiotic conditions. Finally, we explored the consequences of diversifying forests for re-/afforestation initiatives and plantations to reduce atmospheric carbon levels, and the benefits of diversity for mitigating the effects of climate change on ecosystems and human well-being. We highlighted the positive effects of tree diversity on tree productivity. By increasing the amount and diversity of litterfall, tree diversity increased litter decomposition and subsequently the assimilation of tree products into the forest soils. Our investigation has shown the key role of microbial communities for forests carbon dynamics by carrying out litter decomposition, soil heterotrophic respiration, and soil carbon stabilization. Most notably, tree diversity effects on soil microbial respiration were mainly mediated by soil microbial biomass rather than soil microbial community taxonomic or functional diversity. The effects of tree diversity on microbial biomass were mediated by biotic and abiotic conditions. Taken together, we revealed the importance of considering space to understand biodiversity-ecosystem functioning relationships. Finally, we argued that tree diversity is a promising avenue to maximize the potential of re-/afforestation projects to mitigate increasing atmospheric carbon. Moreover, we highlighted that diversifying forests in re-/afforestation initiatives can help to reduce climate change effects on ecosystems: first, by increasing resistance and resilience to extreme climatic events, and second, by buffering microclimatic conditions in natural and urban areas. My investigation highlighted that tree diversity effects on ecosystem functioning could be explained by both mass and diversity effects on higher trophic levels and their functions. In addition, I showed the key role of tree diversity-induced spatial heterogeneity and the need to consider space and time in further research. Moreover, these results need to be combined with practitioner constraints to enable feasible restoration projects.:Summary table Bibliographic information .................................................................................... I ~ XV Main body ......................................................................................................... 1 ~ 212 Supplementary materials ..................................................................................... i ~ xv Scientific supplementary materials ............................................................. -1- ~ - 154- Table of Contents Table of figures .......................................................................................................... XI Table of scientific supplementary materials ............................................................. XIII Glossary ................................................................................................................... XV Introduction ................................................................................................................. 3 Chapter I - Tree diversity effects on litter decomposition are mediated by litterfall and microbial processes .................................................................................................. 35 Transition I - II ........................................................................................................... 67 Chapter II - Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning................................................ 71 Transition II - III ....................................................................................................... 107 Chapter III - Abiotic and biotic drivers of scale-dependent tree trait effects on soil microbial biomass and soil carbon concentration ................................................... 111 Transition III - IV ..................................................................................................... 155 Chapter IV – Diverse forests are cool: promoting diverse forests to mitigate carbon emissions and climate change ............................................................................... 159 General discussion ................................................................................................. 173 Abstract .................................................................................................................. 195 General acknowledgments ..................................................................................... 209 Supplementary materials ..............................................................................................i
49

Drivers of decomposition across Sphagnum bog margins / Påverkansfaktorer för nedbrytning i vitmossemyrars kantzoner

Nordström, Emil January 2022 (has links)
Peatlands provide multiple ecosystem services, including extensive carbon sequestration and storage, yet many peatlands have been degraded or destroyed. Peatlands carbon storage capacity is connected to inherently low decomposition rates, causing the build-up of organic matter. Reasons suggested for this include waterlogged conditions that reduce the amount of available oxygen for the decomposer community, a low pH that inhibits bacterial decomposition, and colder temperatures lowering metabolic rates. This study focused on edge effects on decomposition in the transition zone between Sphagnum bogs and surrounding forest, with the expectation that decomposition is lowest in the bog and highest in the forest, but with a mix of factors causing intermediate decomposition rates near the bog edge. Transitional decomposition rates were measured across six bogs in central Sweden during the summer of 2021, using the tea bag index. Three 20 meter transects, each containing seven pairs of tea bags, were buried across the margins of each bog, centred at the edge of the Sphagnum moss. Soil moisture content, pH, and plant composition was also recorded at each burial site, and with 12 temperature loggers placed evenly among four of the bogs. The results confirmed the hypothesis regarding edge effects, and soil moisture was the dominant factor affecting the decomposition rate, having a strong significant negative correlation. The interaction of pH was significant but with an unexpected negative correlation, most likely due to the low pH in the surrounding forest. Temperature displayed no significance, and plants indicative of low decomposition rates included Vaccinium oxycoccos, Drosera rotundifolia, and especially Sphagnum species. The conclusions are that there is an edge effect on decomposition, and maintaining, or restoring, the hydrology of a peatland is the most important factor for continued carbon storage, with a rough estimation of an areas decomposition rate possible to estimate based on its vegetation. / Torvmarker bidrar med flera ekosystemtjänster, däribland utbrett koldioxidupptag och kollagring, trots detta har många torvmarker idag antingen skadats eller förstörts. Torvmarkers förmåga att lagra kol beror på en låg nedbrytningstakt, vilket gör att organiskt material ackumuleras; möjliga förklaringar som föreslagits till detta är vattensjuk mark som minskar syretillgången för nedbrytarsamhället, ett surt pH som missgynnar bakteriell nedbrytning, samt lägre temperaturer vilket sänker metabolismen generellt. Den här studien fokuserade på hur kanteffekter påverkar nedbrytningen i övergångszonen mellan vitmossemyrar och skog, med förväntningen att nedbrytningen är lägst ute i myren och högst i skogen, men att flera olika faktorer orsakar en intermediär nedbrytningshastighet i myrkanten. Nedbrytningshastigheten i 6 myrars övergångszoner, belägna i centrala Sverige, uppskattades under sommaren 2021 med hjälp av tepåseindexet (tea bag index). Tre 20 meters transekter med 7 par tepåsar vardera begravdes vid varje myr, med mitten vid kanten på vitmossan. Mätningar gjordes vid varje tepåsepar gällande markfuktighet, pH, och växtsamhälle, samt vid 4 myrar så placerades totalt 12 temperaturloggrar. Resultaten bekräftar hypotesen om kanteffekter och markfuktighet framträdde som den dominerande faktorn, med en signifikant negativ effekt på nedbrytningshastigheten. Effekten av pH var också signifikant men med en oväntad negativ korrelation, förmodligen på grund av den sura jorden i omgivande tallskog (Pinus sylvestris). Temperatur hade inte någon signifikant effekt, och växter som indikerade låg nedbrytning var Vaccinium oxycoccos, Drosera rotundifolia, samt framförallt Sphagnum spp.. Slutsatsen är att det finns en kanteffekt och att bevara, eller återskapa, hydrologin av en vitmossemyr är den viktigaste faktorn för fortsatt kolinlagring, med en grov skattning av ett områdes nedbrytningshastighet möjlig att basera på markernas växtlighet.
50

Simulated Effects of Varied Landscape-Scale Fuel Treatments on Carbon Dynamics and Fire Behavior in the Klamath Mountains of California

Osborne, Kevin J. 01 December 2011 (has links) (PDF)
I utilized forest growth model (FVS-FFE) and fire simulation software (FlamMap, Randig), integrated through GIS software (ArcMap9.3), to quantify the impacts varied landscape-scale fuel treatments have on short-term onsite carbon loss, long-term onsite carbon storage, burn probability, conditional flame length, and mean fire size. Thirteen fuel treatment scenarios were simulated on a 42,000 hectare landscape in northern California: one untreated, three proposed by the US Forest Service, and nine that were spatially-optimized and developed with the Treatment Optimization Model in FlamMap. The nine scenarios developed in FlamMap varied by treatment intensity (10%, 20%, and 30% of the landscape treated) and treatment type (prescribed fire, mastication and thin + burn). Each scenario was subjected to 10,000 simulated wildfires with random ignition locations in order to develop burn probability and average flame length values for each scenario. I also recorded mean fire size for each scenario. I used the burn probability values to represent the likelihood of future wildfire occurrence, which I incorporated into our long-term onsite carbon storage projections. Our results suggest that the influence landscape-scale fuel treatments have on carbon dynamics and fire behavior metrics (mean burn probability, flame length and mean fire size) are highly dependent upon the treatment arrangement, type, and intensity. The results suggest that treating 20% of the landscape maximizes long-term carbon storage and that prescribed fire minimizes short-term carbon loss and maximizes onsite long-term carbon storage. Treating 20% of the landscape also appears to be the optimal treatment intensity for reducing fire behavior metrics, and treating beyond this level produces diminishing returns in reduction of fire behavior. When treating 20% of the landscape, site-specific treatments appear to perform well in comparison to spatially-optimized treatments.

Page generated in 0.0963 seconds