• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 698
  • 514
  • 168
  • 123
  • 77
  • 36
  • 23
  • 15
  • 15
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 1979
  • 479
  • 339
  • 338
  • 209
  • 191
  • 186
  • 163
  • 154
  • 140
  • 128
  • 123
  • 116
  • 108
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Modélisation d'un ciment pétrolier depuis le jeune âge jusqu'à l'état durci : cinétique d'hydratation et comportement poromécanique / Modelling of an oil well cement paste from early age to hardened state : hydration kinetics and poromechanical behaviour

Samudio, Marcos 20 December 2017 (has links)
La prédiction des propriétés mécaniques des matériaux cimentaires nécessite d'un modèle intégrant l'hydratation progressive du matériau, le couplage entre la consommation d'eau et les contraintes et l'historique des charges appliquées. Ceci est particulièrement important lors de la modélisation du comportement de la gaine de ciment des puits pétroliers qui est soumise, dès son plus jeune âge, à une large gamme de chargements mécaniques et thermiques qui pourraient avoir un effet négatif sur ses propriétés mécaniques. L’objectif de cette thèse est de fournir un cadre de modélisation pour le comportement hydro-mécanique d'une pâte de ciment pétrolier dès son plus jeune âge jusqu'à son état durci. Le manuscrit est divisé en deux parties. Partie I : cinétique d'hydratation L’évolution des propriétés physiques des matériaux cimentaires est contrôlée par l'avancement des réactions d'hydratation. Deux approches de modélisation sont présentées:- Un cadre théorique pour la modélisation de l'hydratation du ciment est développé comme une extension des modèles de nucléation et de croissance classiques. Le modèle multi-composants proposé considère explicitement le ciment anhydre et l'eau comme des phases indépendantes participant à la réaction. Un taux de croissance est introduit qui permet de représenter sous une forme mathématique unique la croissance linéaire ainsi que la diffusion parabolique. La formulation introduit naturellement des paramètres des mélanges cimentaires tels que la composition de la poudre de ciment, les densités des différentes phases, le rapport eau/ciment, le retrait chimique et les propriétés des hydrates. Les différents mécanismes de contrôle de la réaction sont identifiés sur la base du modèle physique proposé.- Une loi générale de la cinétique d'hydratation basée sur la théorie des transformations en phase solide est proposée. Cette formulation est comparée aux lois d'évolution trouvées dans la littérature et contribue à fournir une explication physique qui pourrait aider à la compréhension de la cinétique d'hydratation du ciment. Dans les deux cas, les modèles cinétiques sont calés sur une série de résultats expérimentaux. Partie II : loi de comportement mécanique Le comportement mécanique de la pâte de ciment est décrit dans le cadre des milieux poreux réactifs. La pâte de ciment est modélisée en tant que matériau poreux multi-phases avec une loi constitutive élasto-visco-plastique, dont les paramètres dépendent du degré d'hydratation. Le retrait chimique de la pâte de ciment et la consommation d'eau pendant l'hydratation sont pris en compte dans la détermination des déformations macroscopiques. L’évolution des paramètres poroélastiques de la pâte de ciment lors de l'hydratation est calculée à l’aide d'un modèle micromécanique. Une surface de charge asymétrique avec des seuils de compression et de traction est adoptée pour le régime plastique, avec des mécanismes d’écrouissage tenant compte à la fois des déformations plastiques accumulées et du degré d'hydratation. Le comportement visqueux est basé sur les notions de la théorie de solidification. Une courbe de rétention d'eau est introduite pour tenir compte de la désaturation potentielle du matériau lors de l'hydratation. Les paramètres du modèle pour une pâte de ciment pétrolier classe G sont évalués en simulant des expériences de chargement mécanique dans un dispositif spécialement conçu pour tester le comportement thermo-mécanique de la pâte de ciment dès le début de l'hydratation. Le modèle prédit avec une bonne précision la réponse d'une pâte de ciment en cours d’hydratation lorsqu'elle est soumise à divers chemins de chargement dès son plus jeune âge. L'importance de l'histoire de chargement est mise en évidence, ainsi que la nécessité de la détermination des contraintes effectives tout au long de la vie du matériau / The prediction of the performance of cement-based materials requires a holistic model integrating the progressive hydration of the material, the coupling between water consumption and strains, and the history of the applied loadings. This is particularly important when modelling the behavior of the cement sheath in oil wells which is subjected, from its earliest age and during its lifetime, to a wide range of mechanical and thermal loadings that could have a detrimental effect on its future mechanical properties. The aim of the present thesis is to provide a complete modelling framework for the hydro-mechanical behavior of an oil well cement paste from its earliest age to its hardened state. The manuscript is divided in two parts. Part I: Hydration kinetics The evolution of the most significant physical properties of cement-based materials is controlled by the advancement of the hydration reactions. Two different modelling approaches are presented:- A theoretical framework for the modelling of cement hydration is developed as an extension of classical nucleation and growth models. The proposed multi-component model explicitly considers anhydrous cement and water as independent phases participating in the reaction. We also introduce a growth rate that encompasses linear as well as parabolic diffusion growth in a single continuous mathematical form. The formulation naturally introduces some of the most relevant parameters of cement paste mixtures, such as the cement powder composition, mass densities of the different phases, water to cement ratio, chemical shrinkage and hydrates properties. The different rate-controlling mechanisms can be identified and interpreted on the basis of the proposed physical model.- A general hydration kinetics law based on the theory of solid phase transformations is proposed. This formulation is compared with the evolution laws found in the literature and helps providing a physical explanation that could shed light on the understanding of cement hydration kinetics. In both cases, the kinetic models are calibrated over a series of experimental results in order to properly evaluate the quality of the predictions. Part II: Mechanical constitutive law The mechanical behavior of cement paste is described in the framework of reactive porous media. The cement paste is modelled as a multi-phase porous material with an elastic-viscous-plastic constitutive law, with mechanical parameters depending on the hydration degree. Furthermore, the cement paste chemical shrinkage and pore water consumption during hydration are accounted for in the determination of the macroscopic strains. The evolution of the poroelastic parameters of the cement paste during hydration is calculated by means of a micromechanical upscaling model. An asymmetric yield surface with compressive and tensile caps is adopted for the elastoplastic regime, with hardening mechanisms considering both the cumulated plastic deformations and the hydration degree. The viscous behaviour is based on the notions of solidification theory. A water retention curve is introduced to account for the potential desaturation of the material during hydration. The model parameters for a class G cement paste are evaluated by simulating the results of mechanical loading experiments in a device specially designed for testing the thermo-mechanical behavior of cement paste from the early stages of hydration. The results show that the proposed model predicts with good accuracy the response of a hydrating cement paste when subjected to various loading paths from its early age. The importance of the loading history is outlined, as well as the need for the accurate determination of the effective stresses throughout the life of the material
332

Painéis de partículas homogêneas cimento-bagaço de cana-de-açúcar curados por carbonatação acelerada / Particle-panels homogeneous cement bonded-bagasse cured by accelerated carbonation.

Cabral, Matheus Roberto 08 April 2016 (has links)
O presente estudo teve como objetivo produzir e avaliar o desempenho de painéis de partículas homogêneas de cimento-bagaço de cana-de-açúcar curados por carbonatação acelerada. Para atingir os resultados foram realizados ensaios de caracterizações morfológica e físico-química das partículas de bagaço de cana-de-açúcar, bem como ensaio de termometria para identificar a compatibilidade da matéria prima (bagaço) com o cimento. Os painéis de partículas cimento-bagaço produzidos foram submetidos a dois processos de cura distintos: 1- cura por 48 h em câmara climática, seguida por 24 h em ambiente com concentração de 15% ±0.6 de CO2, seguida por 24 dias em ambiente saturado ao ar; 2- cura em câmara climática por 48 h, seguida por 25 dias em ambiente saturado ao ar. Ao final dos 28 dias de cura e após ensaio de envelhecimento acelerado de imersão e secagem foram realizadas as caracterizações físico-mecânicas seguindo as recomendações das normativas DIN: 310; 322 e 323, bem como caracterização microestrutural e de condutividade térmica do painel de partículas cimento-bagaço. Os resultados obtidos indicaram que os painéis de partículas cimento-bagaço curados por carbonatação acelerada apresentaram melhor desempenho físico-mecânico quando comparados aos painéis não carbonatados, pois a carbonatação melhorou a interface entre as partículas e a matriz cimentícia, proporcionando maior adesividade entre as fases. E, além disso, reduziu o pH do meio alcalino em que as partículas de bagaço de cana-de-açúcar estão inseridas, minimizando o processo de degradação da lignina, celulose e hemicelulose. / The present study aimed to produce and evaluate the performance of homogeneous particles of cement panels-bagasse-sugar cured by accelerated carbonation. To achieve the results tests were carried out morphological and physical-chemical characterization of particles of bagasse of sugar cane, as well as Thermal-test to identify the compatibility of the raw material (bagasse) with cement. The particle cement-bagasse produced were subjected to two different curing processes: 1-cure for 48 h in climate Chamber, followed by 24 h in environment with concentration of 15% ± 0.6, followed by 24 days in saturated air environment; 2-cure in climate Chamber for 48 h, followed by 25 days in saturated air environment. At the end of the 28 days of curing and after accelerated aging test of soaking and drying were realized the physical-mechanical characterizations according the recommendations of the DIN standards: 310; 322 and 323, as well as micro-structural characterization and thermal conductivity of Particleboard bagasse-cement. The results obtained indicated that the particle bagasse-cement cured by accelerated carbonation presented physical-mechanical performance better than compared with non-carbonated panels because the carbonation has improved the interface between the particles and the cementitious matrix, providing greater adhesion between phases. In addition, reduced the pH of the alkaline medium in which the particles of bagasse of sugar cane are inserted, minimizing the process of degradation of lignin, cellulose and hemicellulose.
333

In-line rheological measurements of cement grouts: Effects of water/cement ratio and hydration

Rahman, Mashuqur, Håkansson, Ulf, Wiklund, Johan Unknown Date (has links)
The rheological properties of cement based grouts change with water/cement ratio and time, during the course of hydration. For this reason, it is desirable to be able to measure this change continuously, in-line, with a robust instrument during the entire grouting operation in the field. The rheological properties of commonly used cement grouts were determined using the Ultrasound Velocity Profiling combined with the Pressure Difference (UVP+PD) method. A non-model approach was used that directly provides the properties, and the results were compared with the properties obtained using the Bingham and Herschel-Bulkley rheological models. The results show that it is possible to determine the rheological properties, as well as variations with concentration and time, with this method. The UVP+PD method has been found to be an effective measuring device for velocity profile visualization, volumetric flow determination and the characteristics of the grout pump used. / <p>QS 2013</p>
334

Characterization and Utilization of Cement Kiln Dusts (CKDs) as Partial Replacements of Portland Cement

Khanna, Om Shervan 01 March 2010 (has links)
The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. It was found that CKDs can contain significant amounts of amorphous material (>30%) and clinker compounds (>20%) and small amounts of slag and/or flyash (<5%) and calcium langbeinite (<5%). The study found that CKDs from preheater/precalciner kilns have different effects on workability and heat evolution than CKDs from wet and long-dry kilns due to the presence of very reactive and high free lime contents (>20%). The blends with the two CKDs from preheater/precalciner plants had higher paste water demand, lower mortar flows, and higher heat generation during initial hydrolysis in comparison to all other CKD-PC blends and control cements. The hardened properties of CKD as a partial substitute of PC appear to be governed by the sulfate content of the CKD-PC blend (the form of the CKD sulfate is not significant). According to analysis of the ASTM expansion in limewater test results, the CKD-PC blend sulfate content should be less than ~0.40% above the optimum sulfate content of the PC. It was also found that the sulfate contribution of CKD behaves similar to gypsum. Therefore, CKD-PC blends could be optimized for sulfate content by using CKD as a partial substitute of gypsum during the grinding process to control the early hydration of C3A. The wet and long-dry kiln CKDs contain significant amounts of calcium carbonate (>20%) which could also be used as partial replacement of limestone filler in PC.
335

Characterization and Utilization of Cement Kiln Dusts (CKDs) as Partial Replacements of Portland Cement

Khanna, Om Shervan 01 March 2010 (has links)
The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. It was found that CKDs can contain significant amounts of amorphous material (>30%) and clinker compounds (>20%) and small amounts of slag and/or flyash (<5%) and calcium langbeinite (<5%). The study found that CKDs from preheater/precalciner kilns have different effects on workability and heat evolution than CKDs from wet and long-dry kilns due to the presence of very reactive and high free lime contents (>20%). The blends with the two CKDs from preheater/precalciner plants had higher paste water demand, lower mortar flows, and higher heat generation during initial hydrolysis in comparison to all other CKD-PC blends and control cements. The hardened properties of CKD as a partial substitute of PC appear to be governed by the sulfate content of the CKD-PC blend (the form of the CKD sulfate is not significant). According to analysis of the ASTM expansion in limewater test results, the CKD-PC blend sulfate content should be less than ~0.40% above the optimum sulfate content of the PC. It was also found that the sulfate contribution of CKD behaves similar to gypsum. Therefore, CKD-PC blends could be optimized for sulfate content by using CKD as a partial substitute of gypsum during the grinding process to control the early hydration of C3A. The wet and long-dry kiln CKDs contain significant amounts of calcium carbonate (>20%) which could also be used as partial replacement of limestone filler in PC.
336

Intermediate and Low Level Nuclear Waste Stabilisation: Carbonation of Cement-based Wasteforms

Andreou, Sean January 2003 (has links)
Carbonation is a naturally-occurring process whereby Ca-containing cement phases lose their hydration water and are converted to carbonate minerals by reaction with atmospheric CO&#8322;. As these secondary minerals develop in the microstructure of hydrated cement, porosity, pore-size distribution and permeability are decreased. These are all considered desirable properties in a wasteform. The objective of this study was to examine the effect of carbonation and different pozzolans on the leach performance and mechanical strength of ordinary Portland cement (OPC) wasteforms. Two methods of accelerated cement carbonation were used: <ol> <li>A vacuum carbonation method, where wasteforms are placed in an evacuated, sealed cell and subjected to small additions of CO&#8322; over several days at near vacuum conditions; and <li>A one-step carbonation method, where CO&#8322; gas is added to the wasteform paste as it is being mixed. </ol> Thirteen elemental constituents of interest to the safety assessments of long-term management of Ontario Power Generation's radioactive waste (Cl, N, S, Se, 13C, Th, Pb, Co, Ni, Cu, Sr, Ba and Cs) were stabilised/solidified via cement mix water. Wasteforms were produced with only OPC, OPC and fly ash, or OPC and silica fume. Most wasteforms were carbonated using one of the carbonation methods. Some wasteforms were not carbonated and served as controls. Wasteforms were subjected to either standard leach tests or compressive strength tests. The extent of carbonation was found to be about 20% for vacuum carbonation method, substantially higher than that for one-step treatment (up to about 10%). For vacuum carbonated wasteforms, carbonation occurred at the outer selvages of the wasteforms, whereas one-step treatment resulted in homogenous carbonation. Generally, compared to uncarbonated OPC wasteforms, vacuum carbonation increased leaching of elements that are anionic in cementitious conditions (Cl, N, S, Se, 13C, Th), decreased leaching of large metal cations (Sr, Ba, Cs, Pb) and had negligible effect on the leaching of the elements that form hydroxyl complexes (Co, Ni, Cu). 13C was the only anionic element whose leachability was reduced by vacuum carbonation, as it may be precipitated in the form CO32- in the large quantity of secondary carbonate minerals produced during the vacuum carbonation process. One-step carbonation did not result in substantial reductions in leachability, compared to uncarbonated OPC wasteforms. However, it had an interesting inverse effect on large metal cation leachability from fly ash- and silica fume-containing wasteforms. A model is presented that proposes that porewater pH changes can have an effect on waste element leachability because 1) the C-S-H Ca/Si ratio is dependent on the equilibrating porewater pH and 2) the degree of ion sorption on C-S-H is dependent on the C-S-H Ca/Si ratio. This model should be tested experimentally as it has important implications on wasteform design. Because of this inverse behaviour, overall neither pozzolan outperformed the other with respect to leachability. Generally, for uncarbonated wasteforms, OPC retained the elements more effectively than OPC with pozzolans. For pozzolans, the leachability of these elements from OPC with fly ash was lower than that of OPC with silica fume. Leaching of Cs was anomalously low from uncarbonated OPC wasteforms, but follow-up experimentation did not corroborate this anomaly. Further testing of these wasteforms to determine how the mineralogical fate of Cs can differ between wasteforms is recommended. All wasteforms tested were of acceptable strength (<0. 689 MPa). Fly ash, and, to a greater degree, silica fume, improved wasteform strength when compared to OPC wasteforms. Carbonation treatments had little effect on wasteform strength. This study has provided much information about the leaching characteristics of a representative set of waste elements from several cement-based wasteform treatments. Although it has not indicated a wasteform design that is ideal for all elements studied, it does suggest that some treatments may be effective for certain groups of elements. Most notably, vacuum carbonation shows promise in improving the immobilisation of isotopes of large metal cations such as Sr, Ba, Cs and Pb as well as 14C (as suggested by 13C here) in cement-based wasteforms.
337

Intermediate and Low Level Nuclear Waste Stabilisation: Carbonation of Cement-based Wasteforms

Andreou, Sean January 2003 (has links)
Carbonation is a naturally-occurring process whereby Ca-containing cement phases lose their hydration water and are converted to carbonate minerals by reaction with atmospheric CO&#8322;. As these secondary minerals develop in the microstructure of hydrated cement, porosity, pore-size distribution and permeability are decreased. These are all considered desirable properties in a wasteform. The objective of this study was to examine the effect of carbonation and different pozzolans on the leach performance and mechanical strength of ordinary Portland cement (OPC) wasteforms. Two methods of accelerated cement carbonation were used: <ol> <li>A vacuum carbonation method, where wasteforms are placed in an evacuated, sealed cell and subjected to small additions of CO&#8322; over several days at near vacuum conditions; and <li>A one-step carbonation method, where CO&#8322; gas is added to the wasteform paste as it is being mixed. </ol> Thirteen elemental constituents of interest to the safety assessments of long-term management of Ontario Power Generation's radioactive waste (Cl, N, S, Se, 13C, Th, Pb, Co, Ni, Cu, Sr, Ba and Cs) were stabilised/solidified via cement mix water. Wasteforms were produced with only OPC, OPC and fly ash, or OPC and silica fume. Most wasteforms were carbonated using one of the carbonation methods. Some wasteforms were not carbonated and served as controls. Wasteforms were subjected to either standard leach tests or compressive strength tests. The extent of carbonation was found to be about 20% for vacuum carbonation method, substantially higher than that for one-step treatment (up to about 10%). For vacuum carbonated wasteforms, carbonation occurred at the outer selvages of the wasteforms, whereas one-step treatment resulted in homogenous carbonation. Generally, compared to uncarbonated OPC wasteforms, vacuum carbonation increased leaching of elements that are anionic in cementitious conditions (Cl, N, S, Se, 13C, Th), decreased leaching of large metal cations (Sr, Ba, Cs, Pb) and had negligible effect on the leaching of the elements that form hydroxyl complexes (Co, Ni, Cu). 13C was the only anionic element whose leachability was reduced by vacuum carbonation, as it may be precipitated in the form CO32- in the large quantity of secondary carbonate minerals produced during the vacuum carbonation process. One-step carbonation did not result in substantial reductions in leachability, compared to uncarbonated OPC wasteforms. However, it had an interesting inverse effect on large metal cation leachability from fly ash- and silica fume-containing wasteforms. A model is presented that proposes that porewater pH changes can have an effect on waste element leachability because 1) the C-S-H Ca/Si ratio is dependent on the equilibrating porewater pH and 2) the degree of ion sorption on C-S-H is dependent on the C-S-H Ca/Si ratio. This model should be tested experimentally as it has important implications on wasteform design. Because of this inverse behaviour, overall neither pozzolan outperformed the other with respect to leachability. Generally, for uncarbonated wasteforms, OPC retained the elements more effectively than OPC with pozzolans. For pozzolans, the leachability of these elements from OPC with fly ash was lower than that of OPC with silica fume. Leaching of Cs was anomalously low from uncarbonated OPC wasteforms, but follow-up experimentation did not corroborate this anomaly. Further testing of these wasteforms to determine how the mineralogical fate of Cs can differ between wasteforms is recommended. All wasteforms tested were of acceptable strength (<0. 689 MPa). Fly ash, and, to a greater degree, silica fume, improved wasteform strength when compared to OPC wasteforms. Carbonation treatments had little effect on wasteform strength. This study has provided much information about the leaching characteristics of a representative set of waste elements from several cement-based wasteform treatments. Although it has not indicated a wasteform design that is ideal for all elements studied, it does suggest that some treatments may be effective for certain groups of elements. Most notably, vacuum carbonation shows promise in improving the immobilisation of isotopes of large metal cations such as Sr, Ba, Cs and Pb as well as 14C (as suggested by 13C here) in cement-based wasteforms.
338

A Comparative Analysis Of The Recent Cement Grinding Systems With Particle-based Influences On Cement Properties

Fidan, Berkan 01 February 2011 (has links) (PDF)
The conventional cement grinding system, the ball mill, has very poor efficiencies in spite of innovative improvements. For this purpose, development of new techniques, which allow proper size reduction and uniform particle size distribution with less specific energy consumptions, have become a necessity. The aim of this study is to make a comparative analysis of the fairly new cement grinding technologies, COMFLEX&reg / Grinding System, Roller Press and HOROMILL&reg / , at the same cement production plant with the same raw materials. In this context, CEM I 42.5 R type cement was produced with a fixed Blaine fineness of 3600 (&plusmn / 100) cm2/g at three different grinding units. The same raw materials, clinker and gypsum, and identical feeding ratios, 95% and 5%, were used to produce cement. Accordingly, these different grinding techniques were inspected with respect to the microstructural properties of cement particles, and the relative chemical, physical and mechanical properties of products. It was found that the main cement grinding parameters, specific surface area and sieve residue, do not show expected relation and change with each grinding system due to differences in the size reduction technique. Moreover, strength and other hardened mortar properties are directly affected by the liberation conditions of reactive grains at grinding stages.High capacity and low specific energy consumption i.e. the breaking and cracking efficiency of the roller press and higher grinding performance of the ball mill promoted the COMFLEX&reg / system. On the other hand, the roller press was clearly advantageous at early strength performances with moderate specific energy usages during grinding. Nonetheless, it also had drawbacks like higher water demand and earlier setting times (which mean higher hydration temperatures). When the wideness and sharpness of classification results were considered, HOROMILL&reg / gave better results with high circulation and efficient air classification design / although there were weaknesses of the system such as lower capacity and higher specific energy consumption rate.
339

Effect of titanium dioxide nanoparticles on early age and long term properties of cementitious materials

Lee, Bo Yeon 28 June 2012 (has links)
Today, with increasing global awareness and regulation of air pollution, interest in the smog-abating property of photocatalytic materials is increasing. Titanium dioxide (TiO2) is the most well known photocatalytic semiconductor and is often considered as one way of solving pollution by a passive but an effective way, particularly to reduce atmospheric nitrogen oxides (NOx=NO+NO2). This relatively new technology is already being used in some of the countries as a construction material, commercially sold as photocatalytic cement, photocatalytic pavement, self-cleaning tiles, and self-cleaning glass. Prior research has examined the photocatalytic properties of TiO2 itself, as well as TiO2-containing cement-based materials. The majority of this effort has been on characterizing and enhancing the photocatalytic efficiency. However, relatively little research was performed to assess the potential impact of the photocatalytic reaction on the "parent" or "host" material. In this research, the focus is on the effect of photocatalysis on the composition, structure, and properties of cementitious materials, which contain titania nanoparticles at early and late ages. Fundamental examinations on the addition of these chemically non-reactive nanoparticles to cement-based materials are performed. The high surface area of nanoparticles could alter early age properties of cementitious materials, such as setting time, dimensional stability, and hydration rate. Various experimental techniques as well as mathematical modeling were used to examine and explain the early age hydration of cementitious materials when TiO2 nanoparticles are present. Further, the effects of the TiO2 on the long term durability of cement-based materials are investigated to demonstrate their suitability for long-term use in the field. The photocatalytic NOx oxidation efficiency and NOx binding capability of TiO2 containing cementitious materials are experimentally investigated. The durability of TiO2-cement is examined by various techniques on samples that went through extensive photocatalysis and environmental exposures. These investigations have led to tentative conclusions on the use of TiO2 nanoparticles in cementitious materials, and suggest avenues for future study.
340

The effect of early opening to traffic on fatigue life of concrete pavement

Suh, Chul 28 August 2008 (has links)
Not available / text

Page generated in 0.0297 seconds