• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 678
  • 365
  • 158
  • 78
  • 28
  • 25
  • 18
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • Tagged with
  • 1699
  • 206
  • 193
  • 147
  • 142
  • 136
  • 118
  • 110
  • 106
  • 105
  • 94
  • 93
  • 90
  • 86
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Some theoretical aspects of cluster chemistry

Wales, David John January 1988 (has links)
No description available.
122

The Influence of Environment on Galaxy Evolution

Just, Dennis William January 2012 (has links)
We study the influence of environment on galaxy evolution by focusing on two galaxy types known for their connection to dense environments, S0s and Brightest Cluster Galaxies (BCGs). Our goal is to identify the mechanisms responsible for the properties of galaxies in groups and clusters. We first examine the effects of environment on S0 formation over the past ~7 Gyr by tracing the increasing S0 fraction in clusters at two mass scales. We find the build-up of S0s driven by groups/clusters with velocity dispersions σ ≲ 750 km s⁻¹, suggesting mechanisms that operate most efficiently via slow encounters (e.g., mergers and tidal interactions) form S0s.With less-massive halos identified as the site for S0 formation, we test whether another route to S0 formation exists, not in isolated groups but rather in a system of four merging groups (SG1120). We place limits on how recent the S0s in that system could have formed, and finding no star formation, conclude they formed ≳ 1 Gyr prior to SG1120's current configuration, when they were in more isolated groups. We next explore cluster outskirts to constrain the number of infalling galaxies that need to be transformed and whether that process has already begun. We find the red fraction of infalling galaxies is elevated relative to the field, and that red galaxies are more clustered than blue ones, a signature of "pre-processing". We disentangle the relative strength of global versus local environment on galaxy transformation by comparing the correlation of red fraction with radius and local density. We find that both parameters are connected with the red fraction of galaxies. Finally, we measure the frequency of galaxies falling into the cluster that are bright enough to supplant the current BCG and compare the results to models. We find in ~ 85% of our clusters that the BCG is secure and remains in its priviledged state until z ~ 0.From these analyses, we find that intermediate density environments (groups and cluster outskirts) are the key site to forming S0 galaxies, and that BCGs, while not exclusively a cluster phenomenon, are well established by the redshifts we explore.
123

Molecular mechanisms regulating Golgi architecture during the mammalian cell division cycle

Shorter, James Gordon January 2000 (has links)
No description available.
124

Clusters of galaxies

Millington, S. J. C. January 1987 (has links)
No description available.
125

Dynamical evolution of idealised star cluster models

Breen, Philip Gavin January 2013 (has links)
This thesis is concerned with the dynamical evolution of globular star clusters modelled as the classical gravitational N-body problem. The models in this thesis are idealised in order to allow the detailed study of particular dynamical aspects of the cluster evolution. Examples of properties which tend to be omitted are stellar evolution, primordial binaries and the effect of an external tidal gravitational field. The methods used in this thesis are gas models, N-body models and physical arguments. One of the main topics in this thesis is gravothermal oscillations in multicomponent star clusters. The evolution of one-component globular clusters, systems with equal particle masses, is quite well understood. However, the evolution of more realistic globular clusters, with a range of particle masses, is a much more complicated matter. The condition for the on-set of gravothermal oscillations in a one-component system is simply that the number of stars is greater than a certain number ( ≈7000). In a multi-component system the relationship between the number of stars at which the gravothermal oscillations first appear and the stellar mass distribution of a cluster is a complex one. In order to investigate this phenomenon two different types of multi-component systems were studied: two-component systems (the simplest approximation of a mass spectrum, Chapter 2) and ten-component systems (which were realisations of continuous power law IMFs, Chapter 3). In both cases the critical number of stars at which gravothermal oscillations first appear are found empirically for a range of stellar mass distributions. The nature of the oscillations themselves are investigated and it is shown that the oscillations can be understood by focusing on the behaviour of the heavier stars within the cluster. A parameter Nef (de nined Mtot/mmax where Mtot is the total mass and mmax is the maximum stellar mass) acts as an approximate stability boundary for multicomponent systems.The stability boundary was found to be at Nef ~- 12000. In this Chapter 4, globular star clusters which contain a sub-system of stellar-mass black holes (BH) are investigated. This is done by considering two-component models, as these are the simplest approximation of more realistic multi-mass systems, where one component represents the BH population and the other represents all the other stars. These systems are found to undergo a long phase of evolution where the centre of the system is dominated by a BH sub-system. After mass segregation has driven most of the BH into a compact sub-system, the evolution of the BH sub-system is found to be in uenced by the cluster in which it is contained. The BH sub-system evolves in such a way as to satisfy the energy demands of the whole cluster, just as the core of a one component system must satisfies the energy demands of the whole cluster. The BH sub-system is found to exist for a significant amount of time. It takes approximately 10trh;i, where trh;i is the initial half-mass relaxation time, from the formation of the compact BH sub-system up until the time when 90% of the sub-system total mass is lost (which is of order 103 times the half-mass relaxation time of the BH sub-system at its time of formation). Based on theoretical arguments the rate of mass loss from the BH sub-system (M2) is predicted to be (βζM)/(αtrh): where M is the total mass, trh is the half-mass relaxation time, and α, β, ζ are three dimensionless parameters. (see Section 4.3 for details). An interesting consequence of this is that the rate of mass loss from the BH sub-system is approximately independent of the stellar mass ratio (m2/m1) and the total mass ratio (M2/M1) (in the range m2/m1 ≥ 10 and M2/M1 ≈ 10-2, where m1, m2 are the masses of individual low-mass and high-mass particles respectively, and M1, M2 are the corresponding total mass). The theory is found to be in reasonable agreement with most of the results of a series of N-body simulations, and all of the models if the value of ζ is suitable adjusted. Predictions based on theoretical arguments are also made about the structure of BH sub-systems. Other aspects of the evolution are also considered such as the conditions for the onset of gravothermal oscillation. The final chapter (Chapter 5) of the thesis contains some concluding comments as well as a discussion on some possible future projects, for which the results in this thesis would be useful.
126

COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY

Haan, T. de, Benson, B. A., Bleem, L. E., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Bayliss, M., Bocquet, S., Brodwin, M., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Desai, S., Dietrich, J. P., Dobbs, M. A., Doucouliagos, A. N., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Murray, S. S., Padin, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruel, J., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Schrabback, T., Shirokoff, E., Song, J., Spieler, H. G., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., Zenteno, A. 18 November 2016 (has links)
We present cosmological parameter constraints obtained from galaxy clusters identified by their SunyaevZel'dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z > 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat Lambda CDM cosmology, we combine the cluster data with a prior on H-0 and find sigma(8)= 0.784. +/- 0.039 and Omega(m) = 0.289. +/- 0.042, with the parameter combination sigma(8) (Omega(m)/0.27)(0.3) = 0.797 +/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to Lambda CDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (N-eff) are free parameters. When combined with constraints from the Planck CMB, H-0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w = -1.023 +/- 0.042.
127

Tidal stripping as a test of satellite quenching in redMaPPer clusters

Fang, Yuedong, Clampitt, Joseph, Dalal, Neal, Jain, Bhuvnesh, Rozo, Eduardo, Moustakas, John, Rykoff, Eli 01 December 2016 (has links)
When darkmatter haloes are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhaloes. This stripping eventually removes all mass beyond a subhalo's tidal radius, with unbound mass remaining in the vicinity of the satellite for at most a dynamical time t(dyn). The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: correlations between subhaloes beyond the tidal radius are sensitive to the infall time, t(infall), of the subhalo on to its host. We perform this correlation using similar to 160 000 red satellite galaxies in Sloan Digital Sky Survey redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, t(infall) < t(dyn). Combined with estimated dynamical times t(dyn) similar to 3-5 Gyr and SED fitting results for the time at which satellites stopped forming stars, t(quench) similar to 6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. The result holds for red satellites over a large range of cluster-centric distances 0.1-0.6 Mpc h(-1). We discuss the implications of this result formodels of galaxy formation.
128

Propriedades estruturais e eletrônicas de clusters de (TiO2)n e (CeO2)n, n = 1-15, usando a teoria do funcional da densidade / Electronic and structural properties of (TiO2)n e (CeO2)n clusters, n=1-15, using density functional theory

Rosalino, Israel 24 May 2016 (has links)
O uso de dióxidos de metais de transição em aplicações tecnológicas é bastante amplo, pois esses compostos possuem características importantes de semicondutores. Apesar de existir um grande número de estudos experimentais e teóricos, o entendimento das propriedades estruturais e eletrônicas desses compostos ainda não é satisfatória, principalmente quando se envolve o estudo de clusters. Clusters podem ser definidos como uma fase embrionária da matéria, pois são partículas contendo um número muito reduzido de átomos em comparação com partículas macroscópicas. Logo, suas propriedades estruturais e eletrônicas são totalmente distantes da fase cristalina do material, o que permite o desenvolvimento de novos materiais para aplicações tecnológicas. Portanto, existe um grande interesse em compreender as propriedades estruturais e eletrônicas dos clusters. Neste projeto de mestrado temos como objetivo estudar as propriedades estruturais e eletrônicas de clusters de TiO2 e CeO2 , usando para isso cálculos de primeiros princípios com base na teoria do funcional da densidade (DFT). Um dos principais problemas no estudo de clusters é a determinação da estrutura atômica, devido as dificuldades experimentais envolvidas em se trabalhar com estruturas tão pequenas. Dessa forma, um dos nossos maiores desafios foi a determinação das estruturas atômicas dos clusters desses dois tipos de dióxidos de metais de transição, uma vez que, o nosso grupo (QTnano) já conta com grande experiência, principalmente no desenvolvimento e implementação de algoritimos de otimização global. Devido as dificuldades envolvidas no estudo de partículas tão pequenas, ficamos restritos ao estudo de clusters com composição (MO2)n , com n = 1-15, ou seja, os nossos maiores clusters tem um total de 45 átomos, formando estruturas com diâmetro de inferior a 3 nm. Além da obtenção das estruturas, foi realizado o estudo das propriedades eletrônicas, energéticas e vibracionais para cada uma das composições geradas, o que propiciou a melhor compreensão sobre os efeitos eletrônicos nas estrutura atômica dos clusters. / The use of transition metal dioxides in technological applications is wide spread, because these compounds have important characteristics of semiconductors. Although there a large number of theoretical and experimental studies, the acknowledgement about the structural and electronic properties these compounds are not yet satisfactory, especially when studying clusters. Clusters can be defined as an embryonic phase of matter, because they are particles that contain a very small number of atoms in comparison with macroscopic particles. So, the structural and electronic properties are very distinct of the material crystalline phase, when allow the development of new materials in technological applications. Therefore a large interest exist in understanding the structural and electronic properties of clusters. In this master\'s degree project we have as objective to study the electronic and structural properties of TiO2 and CeO2 clusters, using first principle calculations based on the density functional theory (DFT). One of the main problems in the study of clusters is to determine the atomic structure, due the experimental difficult of work with so small particles. Thus, a great challenge was to determine the atomic structures of these two different transition metal dioxides, considering that our group (QTnano), has a large knowledge in the development and implementation of global optimization algorithms. Due the difficulty involved in studying small particles, we were restricted to the clusters of composition (MO2)n, with n = 1-15. In other words, our largest clusters have 45 atoms and a diameter smaller than 3 nm. Along with securing the structures, we realize the study of electronic, energetic and vibrational properties to each generated composition, providing an understanding of electronic effects in the atomic structure of clusters.
129

Low frequency radio observations of galaxy clusters and groups

Cantwell, Therese January 2018 (has links)
The detection of Mpc scale diffuse radio emission in galaxy clusters provides evidence that cosmic ray electrons, as well as cluster scale magnetic fields are present in clusters. As such, radio observations of clusters provide a unique opportunity to study the non-thermal populations of the intra-cluster medium. Observations of Faraday rotation in sources embedded in cluster and group environments offers an additional method for probing the cluster/group magnetic field. In this thesis I present low frequency radio observations of multiple galaxy clusters in order to investigate the nature of diffuse radio emission present in many clusters. I also present observations of the giant radio galaxy NGC 6251 and discuss both the source properties as well as the host group environment. In Chapter 1 of this thesis I review the current understanding of galaxy clusters, groups and radio galaxies. I also describe some of the astrophysical processes important to this thesis. In Chapter 2 I discuss the interferometry and the process of calibrating interferometric data. I also describe some of the techniques used later in the thesis such as QUfitting and RM synthesis. In Chapter 3 I present my observations of the massive merging galaxy cluster MACSJ2243.3-0935. I report the discovery of a radio halo in MACSJ2243.3-0935, as well as a new radio relic candidate, using the Giant Meterwave Radio Telescope and the KAT-7 telescope. The radio halo is coincident with the cluster X-ray emission and has a largest linear scale of approximately 0.9 Mpc. I measure a flux density of $10.0\pm 2.0\, \rm mJy$ at 610 MHz for the radio halo. I discuss equipartition estimates of the cluster magnetic field and constrain the value to be of the order of $1\, \rm \mu G$. The relic candidate is detected at the cluster virial radius where a filament meets the cluster. The relic candidate has a flux density of $5.2\pm 0.8\, \rm mJy$ at 610 MHz. I discuss possible origins of the relic candidate emission and conclude that the candidate is consistent with an infall relic. In Chapter 4 I present my GMRT observations at 610 MHz of 3 disturbed galaxy clusters, A07, A1235 and A2055. No diffuse emision was observed any of the three clusters. In order to place upper limits on the radio halo power in these clusters I have injected simulated halos at difffent radio powers into the uvdata. A07 has a radio halo upper limit of $P_{\rm 610MHz}=1.5\times10^{24}$ W Hz$^{-1}$. A2055 has a radio halo upper limit of $P_{\rm 610MHz}=1.8\times10^{24}$ W Hz$^{-1}$. A1235 has a radio halo upper limit of $P_{\rm 610MHz}=5.8\times10^{23}$ W Hz$^{-1}$. These limits are below the $P_{610}-L_{\rm X}$ relation and rule out bright radio halo in these clusters. I have identified these clusters as potential hosts for Ultra Steep Spectrum Radio Halo (USSRH). Observations with LOFAR should be capable of confirming whether or not these clusters host USSRH. In Chapter 5 I present observations of the giant radio galaxy NGC 6251 with LOFAR HBA. NGC 6251 is a giant radio galaxy with a borderline FRI/FRII morphology located in a poor group. The images presented in this chapter are the highest sensitivity and resolution images of NGC 6251 at these frequencies to date. Analysis of the low frequencies spectral index did not reveal any change in the low frequency spectra when compared with the higher frequency spectral index. NGC 6251 is found to be either at equilibrium or slightly electron dominated, similar to FRII sources. I calculated the ages of the low surface brightness extension of the northern lobe and the backflow of the southern lobe, which are only clearly visible at these low frequencies, to be 205 Myr$.
130

Transformaciones alquímicas en clusters y moléculas

Muñoz González, Macarena del Pilar. 06 1900 (has links)
Doctor en Ciencias con mención en Física / Uno de los grandes retos actuales en ciencia de materiales es el desarrollo racional de compuestos, es decir, establecer protocolos experimentales y teoricos que permitan el diseño de materiales con propiedades optimizadas para aplicaciones especifi cas. Desde el punto de vista teórico, y en particular de la estructura electrónica, el reto es enorme. Para evidenciar esto es su ciente notar la vastedad del \espacio químico", es decir, el conjunto de compuestos estables que hipotéticamente pueden ser creados a partir de los elementos de la tabla periódica. Estimaciones conservadoras de tan solo un subconjunto de posibles moléculas orgánicas pequeñas, llevan a concluir que este espacio contiene muchísimo mas que 1060 compuestos. Este proyecto propone una alternativa e ciente para explorar el espacio químico. En particular, se implementara un método perturbativo de la energía de un sistema electrónico, con el cual poder estudiar y optimizar propiedades de clusters atómicos y moléculas. Mediante el uso de transformaciones alquímicas, las cuales se de nen como cualquier proceso real o ficticio en el que un sistema cambia su estequiometría, se estudiara la estabilidad de clusters heteroatomicos, como también comprender los mecanismos que promuevan la deprotonacion en moléculas orgánicas. / Beca de Doctorado CONICYT #21130691.Ademas, este trabajo ha sido parcialmente financiado por FONDECYT, proyecto #1140313.

Page generated in 0.0571 seconds