• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 68
  • 63
  • 21
  • 11
  • 10
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 368
  • 368
  • 143
  • 92
  • 88
  • 63
  • 62
  • 62
  • 61
  • 61
  • 56
  • 54
  • 45
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Assessment of lime treatment of expansive clays with different mineralogy at low and high temperatures

Ali, Hatim, Mohamed, Mostafa H.A. 12 December 2019 (has links)
Yes / This paper examines the impacts of clay mineralogy on the effectiveness of lime stabilisation at different temperatures. A comprehensive experimental programme was conducted to track down the evolution of lime-clay reactions and their durations through monitoring the evolution of strength gain at predetermined times using the Unconfined Compressive Strength (UCS) test. The study examined clays with different mineralogy compositions comprising Na+ Bentonite and Ball (Kaolinite) clay. Four different clays were tested including 100% bentonite, 100% Ball clay and two clay mixtures with ratios of 1:1 and 1:3 by mass of bentonite to Ball clay. All clays were treated using a range of lime content up to 25% and cured for a period of time up to 672 h at two different temperatures of 20 and 40 °C. The results showed that the continuity of the fast phase (stage 1) of strength gain was dependent on the availability of lime in particular at the higher temperature. Whereas, for the same lime content, the duration of the fast phase and the kinetic of strength gain were significantly related to the clay mineralogy and curing temperature. Except for the initial strength gain at 0 h curing time, the lime-treated Ball clay specimens at 20 °C appeared to show no strength gain throughout the curing period that extended up to 672 h. However, when curing occurred at 40 °C, the no strength gain stage only lasted for 72 h after which a gradual increase in the strength was observed over the remaining curing period of time. The addition of Bentonite to Ball clay succeeded in kicking off the strength gain after a short period of curing time at both curing temperatures.
92

Development of Alkali-Activated Binders froRecycled Mixed Masonry-originated Waste

Yildirim, Gurkan, Kul, A., Özçelikci, E., Sahmaran, M., Aldemir, A., Figueira, D., Ashour, Ashraf 24 July 2020 (has links)
Yes / In this study, the main emphasis is placed on the development and characterization of alkali-activated binders completely produced by the use of mixed construction and demolition waste (CDW)-based masonry units as aluminosilicate precursors. Combined usage of precursors was aimed to better simulate the real-life cases since in the incident of construction and demolition, these wastes are anticipated to be generated collectively. As different masonry units, red clay brick (RCB), hollow brick (HB) and roof tile (RT) were used in binary combinations by 75-25%, 50-50% and 25-75% of the total weight of the binder. Mixtures were produced with different curing temperature/periods and molarities of NaOH solution as the alkaline activator. Characterization was made by the compressive strength measurements supported by microstructural investigations which included the analyses of X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX). Results clearly showed that completely CDW-based masonry units can be effectively used collectively in producing alkali-activated binders having up to 80 MPa compressive strength provided that the mixture design parameters are optimized. Among different precursors utilized, HB seems to contribute more to the compressive strength. Irrespective of their composition, main reaction products of alkali-activated binders from CDW-based masonry units are sodium aluminosilicate hydrate (N-A-S-H) gels containing different zeolitic polytypes with structure ranging from amorphous to polycrystalline.
93

A comprehensive study on the compressive strength, durability-related parameters and microstructure of geopolymer mortars based on mixed construction and demolition waste

Ozcelikci, E., Kul, A., Gunal, M.F., Ozel, B.F., Yildirim, Gurkan, Ashour, Ashraf, Sahmaran, M. 20 February 2023 (has links)
Yes / As a viable option to upcycle construction and demolition waste (CDW) into value-added materials, geopolymer technology is emerging. Most studies investigate CDWs in a separated form or in combination with mainstream pozzolanic/cementitious materials focusing only on fundamental properties of geopolymer pastes, not considering to scale such materials to the level of their application in the forms of structural mortars/concretes or to characterize long-term performance/durability. This study investigated the development and characterization of ambient-cured mortars with mixed CDW-based geopolymer binders and untreated fine recycled concrete aggregates (FRCA). Mixture of CDW-based roof tile (RT), red clay brick (RCB), hollow brick (HB), concrete (C), and glass (G) was used as the precursor, while ground granulated blast furnace slag (S) was used in some mixtures to partly replace CDW precursors. Compressive strength, durability-related parameters including drying shrinkage, water absorption, and efflorescence, microstructure and materials sustainability were evaluated. Results showed that 28 d compressive strength results above 30 and 50 MPa is achievable with the entirely CDW-based and slag-substituted mortars, which were found improvable to have entirely CDW-based structural concretes. Drying shrinkage of the mortars is slightly higher than that of conventional cementitious/geopolymeric systems although it can be minimized significantly through mixture optimization. Water absorption values remain comparable with the literature. CDW-based geopolymer mortars outperform Portland cement mortars in terms of CO2 emission and energy requirement. Our findings show that via utilizing CDW-based constituents in mixed form as precursor and waste aggregates, it is possible to develop greener construction materials with acceptable strength and long-term performance. / This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 894100. The authors also wish to acknowledge the support of the Scientific and Technical Research Council (TUBITAK) of Turkey provided under project: 117M447.
94

Strength, stiffness and ductility of concrete-filled steel columns under axial compression

Lam, Dennis, Wang, Z-B., Tao, Z., Han, L-H., Uy, B., Lam, Dennis, Kang, W-H. 12 January 2017 (has links)
Yes / Extensive experimental and theoretical studies have been conducted on the compressive strength of concrete-filled steel tubular (CFST) columns, but little attention has been paid to their compressive stiffness and deformation capacity. Despite this, strength prediction approaches in existing design codes still have various limitations. A finite element model, which was previously proposed by the authors and verified using a large amount of experimental data, is used in this paper to generate simulation data covering a wide range of parameters for circular and rectangular CFST stub columns under axial compression. Regression analysis is conducted to propose simplified models to predict the compressive strength, the compressive stiffness, and the compressive strain corresponding to the compressive strength (ductility) for the composite columns. Based on the new strength prediction model, the capacity reduction factors for the steel and concrete materials are recalibrated to achieve a target reliability index of 3.04 when considering resistance effect only.
95

Properties of concrete incorporating different nano silica particles

Alhawat, Musab M., Ashour, Ashraf, El-Khoja, Amal 15 May 2020 (has links)
Yes / This paper aims to evaluate the influence of surface area and amount of nano silica (NS) on the performance of concrete with different water/binder (w/b) ratios. For this purpose, 63 different mixes were produced using three NS having three differentsurface areas (52, 250 and 500 m2/g) and w/b ratios (0.4, 0.5 and 0.6). Compressive strengths , workability, water absorption and the microstrcture of concrete mixtures were measured and analysed. and the optimum ratio for each type was determined. The results indicated that the performance of NS particles in concrete is significantly dependent on its amount and surface area as well as w/b ratio. As the w/b ratio increased, a better performance was observed for all types of NS used, whilst NS having 250m2/g surface area was found to be the most effective. The optimum amount of NS ranged from 2 to 5%, depending on NS surface area. / The full-text of this article will be released for public view at the end of the publisher embargo on 15 May 2020.
96

Effect of Superplasticizer on the Performance Properties of Cemented Paste Backfill at Different Curing Temperatures

Haruna, Sada 28 October 2022 (has links)
Cemented paste backfill (CPB) technology is widely used in the mining industry as an effective means of tailings disposal. CPB is a mixture of tailings, binder, water, and additional admixtures when required. It is prepared in a mixing plant on the ground surface and then transported into the mine cavities through pipelines either by gravity and/or using pumps. To ensure efficiency during transportation and avoid pipe clogging (which can cause unnecessary delays and loss of productivity), fresh CPB must have sufficient flowability. To achieve that, high-range water reducing admixtures, also known as superplasticizers, are usually added to the CPB during mixing. These admixtures are widely used in the construction industry due to their ability to improve flowability without undermining other important engineering properties. However, their influence on the rheology, mechanical strength and environmental performance (reactivity and permeability) of CPB is not fully understood. Thus, experimental studies were conducted to investigate the effects of superplasticizers on the performance properties of cemented paste backfill at different curing temperatures. Yield stress and viscosity of fresh CPB cured for 0, 1, 2, and 4 hours were measured using a vane shear device and a Brookfield Viscometer respectively. Unconfined compressive strength (UCS) of samples cured for 1, 3, 7, and 28 days was determined in accordance with ASTM - C39. Superplasticizer contents were varied as 0%, 0.125%, and 0.25% of the total weight of the CPB. Preparations and curing of the specimens were performed at controlled conditions of 2, 20, and 35 °C to investigate the effect of ambient or curing temperatures. To have a better understanding of the environmental performance of CPB containing superplasticizer, reactivity, and hydraulic conductivity up to 90 days of curing were also investigated. The reactivity was measured using oxygen consumption test while hydraulic conductivity was measured using flexible wall permeability test. Microstructural analyses (thermogravimetric analyses, X-Ray diffraction, and mercury intrusion porosimetry) and monitoring tests (pH, zeta potential, electrical conductivity, and matric suction) were carried out to understand the principles behind the changes of the observed properties. The obtained results show that superplasticizer dosage and temperature variation have significant effects on the rheology, strength development, hydraulic conductivity and reactivity of the CPB. The polycarboxylic ether-based superplasticizer significantly reduces the yield stress and viscosity by creating strong electrostatic repulsion between the solid particles in the CPB and by steric hinderance. The CPB containing the superplasticizer remains fluid for longer period (as compared with the CPB without superplasticizer) due to the retardation of binder hydration. However, high curing temperature induces faster cement hydration, which thickens the fresh CPB. The unconfined compressive strength (UCS) of the CPB containing superplasticizer was observed to be lower in the early age (up to 7 days), which is also attributed to retardation of the binder hydration. At later ages, the superplasticizer improves the mechanical strength as the binder hydration accelerates and the solid particles self-consolidate. Coupled THMC processes in the CPB showed the role played by the changes in electrical conductivity, volumetric water content, matric suction, and temperature on the development of mechanical strength of the CPB containing superplasticizer. Similarly, addition of the superplasticizer in the CPB decreases both the hydraulic conductivity and reactivity of CPB, thus improving its environmental performance. The improvement is largely attributed to enhanced binder hydration and self-consolidation which decrease the porosity of the CPB. Increasing the curing temperature was found to magnify the improvement of the CPB properties by inducing faster binder hydration. The findings from this study will undoubtedly inform the design of CPB structure with better mechanical stability and environmental performance.
97

Assessment of lime-treated clays under different environmental conditions

Ali, Hatim F.A. January 2019 (has links)
Natural soils in work-sites are sometimes detrimental to the construction of engineering projects. Problematic soils such as soft and expansive soils are a real source of concern to the long-term stability of structures if care is not taken. Expansive soils could generate immense distress due to their volume change in response to a slight change in their water content. On the other hand, soft soils are characterised by their low shear strength and poor workability. In earthwork, replacing these soils is sometimes economically and sustainably unjustifiable in particular if they can be stabilised to improve their behaviour. Several techniques have evolved to enable construction on problematic soils such as reinforcement using fibre and planar layers and piled reinforced embankments. Chemical treatment using, e.g. lime and/or cement is an alternative method to seize the volume change of swelling clays. The use of lime as a binding agent is becoming a popular method due to its abundant availability and cost-effectiveness. When mixed with swelling clays, lime enhances the mechanical properties, workability and reduces sensitivity to absorption and release of water. There is a consensus in the literature about the primary mechanisms, namely cation exchange, flocculation and pozzolanic reaction, which cause the changes in the soil characteristics after adding lime in the presence of water. The dispute is about whether these mechanisms occur in a sequential or synchronous manner. More precisely, the controversy concerns the formation of cementitious compounds in the pozzolanic reaction, whether it starts directly or after the cation exchange and flocculation are completed. The current study aims to monitor the signs of the formation of such compounds using a geotechnical approach. In this context, the effect of delayed compaction, lime content, mineralogy composition, curing time and environmental temperature on the properties of lime-treated clays were investigated. The compaction, swelling and permeability, and unconfind compression strength tests were chosen to evaluate such effect. In general, the results of the geotechnical approach have been characterised by their scattering. The sources of this dispersion are numerous and include sampling methods, pulverisation degree, mixing times and delay of compaction process, a pre-test temperature and humidity, differences in dry unit weight values, and testing methods. Therefore, in the current study, several precautions have been set to reduce the scattering in the results of such tests so that they can be used efficiently to monitor the evolution in the properties that are directly related to the formation and development of cementitious compounds. Four clays with different mineralogy compositions, covering a wide range of liquid limits, were chosen. The mechanical and hydraulic behaviour of such clays that had been treated by various concentrations of lime up to 25% at two ambient temperatures of 20 and 40oC were monitored for various curing times. The results indicated that the timing of the onset of changes in mechanical and hydraulic properties that are related to the formation of cementitious compounds depends on the mineralogy composition of treated clay and ambient temperature. Moreover, at a given temperature, the continuity of such changes in the characteristics of a given lime-treated clay depends on the lime availability.
98

Molecular/Nano Level Approaches for the Enhancement of Axial Compressive Properties of Rigid-Rod Polymers

Dang, Thuy Dinh 03 November 2009 (has links)
No description available.
99

Pre-hydration as a technique for the retardation of Roman cement mortars

Starinieri, V., Hughes, David C., Gosselin, C., Wilk, D., Bayer, K. 10 January 2013 (has links)
No / The setting of Roman cement is so rapid as to make the use of retardation essential in most practical mortars. This work reports an approach to retardation of Roman cement mortars by means of a pre-hydration process in which pre-determined amounts of water (de-activation water) are added to the cement prior to subsequent mortar formation. It is shown that this process yields both monocarboaluminate and a carbonated AF(m) phase, the balance of which is modified by storage time; the belite phases are not affected. Increases in both de-activation water and pre-hydrated mix storage time yield a longer workable life and slightly lower strength of the mortar. An increase in de-activation water also yields an increase in shrinkage whilst an increase in storage time results in a reduction in shrinkage. Other parameters such as mixing protocol and re-mixing affect workable life without compromising the strength. (C) 2013 Elsevier Ltd. All rights reserved.
100

The effects of lime content and environmental temperature on the mechanical and hydraulic properties of extremely high plastic clays

Ali., H., Mohamed, Mostafa H.A. 25 April 2018 (has links)
Yes / This paper focuses on monitoring the evolution of lime-clay reactions using geotechnical parameters as a function of lime content and environmental temperature. Lime contents of 5, 7, 9, 11 and 13% by dry weight of expansive clay powder were added to prepare lime-clay specimens. The specimens were prepared at the same dry unit weight of 12.16 kN/m3 and moisture content of 40% except for tests aimed at the determination of dry unit weight as a function of mellowing period. Prepared specimens were mellowed or cured at two different ambient temperatures of 20 °C and 40 °C. Results attained from Unconfined Compressive Strength and permeability tests were employed to assess the impact of lime content on the mechanical and hydraulic properties of lime treated expansive clays. The results revealed that at the beginning, the rate of strength gain is remarkably fast for a particular period of time which is dependent on lime content. Furthermore, the strength gain on specimens cured at 40 °C is 8 times higher than that observed on specimens cured at 20 °C which highlights significant effect for the environmental temperature on accelerating the chemical reactions. Reduced dry unit weight due to increased resistance to compactability is observable with increasing lime content and higher environmental temperature. Accelerated pozzolanic reaction at higher environmental temperature resulted in permeability coefficient of specimens mellowed for 24 h at 40 °C to be higher than those mellowed at 20 °C. The results also highlighted that the permeability coefficient would be relatively stable when expansive clays were treated with small amounts of lime e.g. 5%.

Page generated in 0.0251 seconds