• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 67
  • 63
  • 21
  • 11
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 366
  • 366
  • 141
  • 92
  • 88
  • 63
  • 62
  • 62
  • 61
  • 59
  • 54
  • 53
  • 45
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Estudo teórico-experimental de elementos comprimidos de aço: ênfase em perfis soldados / Theoretical and experimental study of compressed steel elements: emphasis in welded shapes

Geraldo Donizetti de Paula 03 October 2002 (has links)
Este trabalho apresenta resultados de uma análise teórico-experimental sobre a resistência à compressão de perfis I soldados de aço, formados por chapas cortadas a maçarico. A construção metálica no Brasil utiliza os perfis I soldados formados por chapas cortadas a maçarico em virtude da pouca disponibilidade no mercado dos perfis laminados. Os perfis soldados brasileiros apresentam dimensões (altura, largura de mesa e espessura) diferentes das encontradas nos perfis laminados e soldados, fabricados em outros países. Apresentam-se os principais parâmetros envolvidos na formulação das curvas de resistência à compressão para perfis soldados de pequenas dimensões, tais como: tensões residuais, imperfeições geométricas iniciais e seus efeitos no cálculo da resistência à compressão dos perfis soldados compostos por chapas cortadas a maçarico. Os perfis ensaiados são das séries PS 200x25, PS 225x29 e CS 150x25, sendo que foram obtidos resultados experimentais da força normal crítica e das imperfeições geométricas iniciais para três modelos de cada série com quatro índices de esbeltez diferente. / This work presents results of theoretical and experimental analysis about the compressive strength of steel welded I-shapes manufactured from flame-cut plates. Steel construction in brazil uses these welded I-shapes because of the limited availabilily of hot-rolled shapes in the market. The brazilian welded shapes have dimensions (height, flange width and thickness) that differ from steel welded shapes manufactured in other countries. It presents the main parameters in the formulation of the compressive strength curves for welded shapes of small dimensions as: residual stresses, geometrical initial crookedness and their effects in the evaluation of the compressive strength of the welded shapes manufactured from flame-cut plates. The tested shapes are of PS 200x25, PS 225x29 and CS 150x25 series. Test results were obtained for the critical axial load and the geometrical initial crookedness to three models with four different slenderness ratio in each serie.
72

Effect of Mineral and Chemical Admixtures on Durability of Cementitious Systems

Tran, Victor 05 November 2015 (has links)
Mineral and chemical admixtures are used today in almost all concrete mixtures to improve concrete fresh and hardened properties, and to enhance concrete durability. In this study, four mineral and four chemical admixtures were investigated: namely, metakaolin (MK), silica fume (SF), Class F fly ash (FA), blast-furnace slag (BFS), two high-range water reducers (SP), water reducer/retarder (WRD), and air-entrainer (AEA). The objective of this study is to assess the effects of commonly used mineral and chemical admixtures on the durability of the cementitious system. Two durability issues were addressed in this study: the potential of the cementitious system to generate heat, and sulfate durability. The properties studied here included heat of hydration (HOH) measurements using isothermal calorimetry, setting properties, compressive strength, and expansion on exposure to a sodium sulfate solution. X-ray diffraction was used to characterize the as-received materials and explain failure trends. The findings of this study indicate that silica fume inclusion sustains superior durability in comparison to the other mineral admixtures considered here. Replacement levels as low as 10% outperformed the other admixtures studied. Fly ash showed improvement in the workability of the mixes, but had the lowest compressive strength results and might pose challenges when the rate of strength gain is critical. However, Class F fly ash mixtures showed better performance than unblended mixtures when exposed to a sulfate source. Metakaolin mixes showed higher heat evolution among all the mixtures studied here. This can potentially lead to durability concerns, especially when temperature rise is a design concern. Blast-furnace slag also improved the workability of the mixes and the later compressive strength, but had mixed performances when examined for sulfate durability.
73

Evaluación de pavimentos rígidos mediante la determinación de correlaciones entre el módulo de rotura a la flexión y la resistencia a la compresión para el Centro Poblado San Cristóbal de Chupán – Huaraz

Robles Sáenz, Randolp Julián, Sánchez Medina, Juan Carlos January 2015 (has links)
La resistencia a flexión y la resistencia a la compresión representan parámetros fundamentales en el correcto desarrollo de los pavimentos rígidos, porque definen la calidad del concreto, principal componente de los pavimentos rígidos, después de cumplir satisfactoriamente su ciclo de fraguado y curado. En nuestro enfoque cuantitativo, el problema principal radica en intentar efectuar ensayos de rotura a la flexión en zonas alejadas, como en el centro poblado San Cristóbal de Chupán, reconociendo que sólo es posible realizarlo en pocos laboratorios a nivel nacional. Por esta razón se determinó, en base a ensayos realizados en laboratorio, un factor de correlación que vincula el Módulo de Rotura a la flexión y la Resistencia a la Compresión, siendo el resultado experimental el factor (k) expresado por la ecuación Mr = (k)*√f’c, que identifica rápidamente resultados del Módulo de Rotura a la flexión, aplicable a proyectos de condiciones similares, ante las altas exigencias del control de calidad en los proyectos de construcción. The flexural strength and the compressive strength are fundamental parameters in the correct development of rigid pavements, because they define the quality of concrete, principal component of rigid pavements, after performing successfully their setting and curing cycle. In our quantitative approach, the principal problem has roots in realizing flexural strength tests in remote rural areas such as San Cristobal de Chupán populated, recognizing could only do it in a few laboratories nationwide. Therefore written, it is determined a correlation factor, based on laboratory tests, what can relating Flexural strength and compressive strength. The experimental result express a factor (k), what is on the equation Mr = (k)*√f'c, which quickly identifies results of Flexural Strength, applicable to projects of similar conditions, to the demands of quality control in construction projects.
74

The influence of moulding moisture content on the engineering properties of aggregate-lime-natural pozzolan mixes

Olekambainei, Arip-Kituyan Emmanuel 09 June 2005 (has links)
The current trends in the road transport sector show a growth in axle loads as well as vehicle numbers on all types of roads in highly industrialised countries as well as in developing countries. This increase in axle loads and numbers has forced road agencies to amend their design standards adopting designs that provide roads with higher load bearing capacity. However, the rapid depletion of natural road construction gravel, as well as strict environmental conservation laws have resulted in many agencies in-charge of road construction and maintenance to resort to use of alternative materials that will be economically feasible and environmental friendly. The use of natural pozzolans for stabilising pavement layers fulfils this requirement. This research study was performed with the aim of evaluating the engineering properties of aggregate-lime-natural pozzolan (ALP) mixtures at varying compaction degrees of saturation and to compare them with conventional cement-stabilized aggregates. Two types of pozzolans found in Tanzania were used. The laboratory investigation was carried out in two parts, namely a pilot investigation where the strength behaviour with time, shrinkage and CBR were determined at three degrees of saturation for a washed river sand specimen followed by the main investigation using two different types of sands at four varying degrees of saturation. The study showed that the compaction degree of saturation for ALP mixes plays an important role in their tensile and compressive strengths development regardless of their optimum moisture contents. The ratio between tensile and compressive strengths for ALP mixes was also found to closely obey the relation given by Fulton (2001) for concrete. The ALP mixes were also observed to develop their strength similar to cement mixes with the formation of tobermorite crystals with the additional of water and appropriate activator. Both pozzolan mixes developed significant tensile and compressive strength after 28 days of curing similar to cement mixes. High CBR values for the two ALP mixes were obtained in mixes moulded at degrees of saturation lower than that corresponding to their optimum. Similarly, the shrinkage of the mixes was found to decrease with a decrease in the degrees of saturation. The CBR and shrinkage of the ALP mixes were found to show similar trend to that of the control cement mixes. The ALP mixes showed no significant strength loss with an increase in the fines content in unwashed sand mix in comparison with that of washed sand mixes. No significant strength loss was observed in the ALP mixes as in the control cement mixes at all moulding degrees of saturation. Finally the study concluded that the ALP mixes could be used in stabilization of pavement layers. However, care must be taken in deciding the compaction degrees of saturation as the specifications used in conventional cement stabilization does not necessarily yield desirable strength development in ALP mixes. / Dissertation (MEng (Transportation))--University of Pretoria, 2006. / Civil Engineering / unrestricted
75

A Relationship Between the Strengths of Type N Cubic Mortar Specimens and In-Situ Mortar

Reynolds, Michael Scott 01 May 2019 (has links)
The compressive strength of mortar is typically determined using the American Societyfor Testing and Materials (ASTM) standard method using 2 inch cubes which are compressed tillfailure. There is however a disparity between the compressive strengths of mortar cubes, and insitumortar. This disparity is a result of the differences in thickness, aspect ratio, curingconditions, water content, and confinement between mortar cubes and mortar joints. While thesedifferences lead to mortar joints being stronger than mortar cubes, a relationship between theirstrengths is desired.Two less-common mortar strength tests were used to determine more accurately thecompressive strength of in-situ mortar. The results of both tests were compared to the results ofASTM standard compressive testing with mortars of the same water content. The first was theDouble Punch test which involves the use of two metal punches that compress either side of athin mortar sample till failure. The Double Punch test is more difficult to perform than theASTM standard compression test, but was useful because it simulates the confinement that insitumortar will experience. The Double Punch test was also used with mortar specimens ofvarying thickness to determine a relationship between specimen thickness and compressivestrength. The second test used was the Helix Pullout test. This test is performed by insertingmetal helical screws into a mortar joint, and pulling from the joint while restricting rotation. Themaximum load used to extract the Helix is recorded as the Pullout Load, and is used to find thecompressive strength by use of a calibration curve. This test was used on a masonry wall paneland mortar cubes were also made with the same mortar for compressive testing.The tested mortar exhibited decreased compressive strength with increased water content.The mortar also decreased in strength with increasing specimen thickness. Mortar joints wereshown to be significantly stronger than mortar cubes based on factors of specimen thickness andconfinement by an average factor of at least 2.40. Although results are affected by punchdiameter, the Double Punch test was shown to be a consistent and reliable means of estimatingmortar compressive strength. The Helix Pullout test exhibited wide variation, and wasdetermined to be primarily useful for qualitative comparison as opposed to quantitativedetermination of strength.
76

Relationship Between Compressive Strength of Different Shape and Thickness Specimens of Type S Mortar

Moffett, Theodore James 01 December 2018 (has links)
Mortar is the cementitious binding material placed between masonry blocks to create a composite system. The American Society of Testing and Materials (ASTM), along with other organizations, have established the testing of prismatic mortar specimens for evaluating mechanical properties, like compressive strength. Mortar joints, however, possess vastly different characteristics compared to prismatic specimens, especially in terms of geometry and water content. These differences prevent a direct comparison of compressive strength between prismatic specimens and actual mortar joints in the assembly. The objective of this study was to analyze Type S mortar joints, with particular emphasis on specimen shape and water content, to draw accurate comparisons of compressive strength to ASTM prescribed mortar prismatic specimens.To examine the effect of water on mortar compressive strength, three different water contents were evaluated across nearly all testing series. Cubic (2-in) and cylindrical (2 by 4-in) mortar specimens were prepared and tested according to ASTM guidelines to verify the compressive strength relationship described by ASTM and to be used as comparative data. In addition, a small masonry wall was assembled and cured in a laboratory to simulate true properties of mortar joints. Mortar joints subjected to testing were a combination of thin slices cut from prismatic specimens as well as in-place bed joints cured between concrete masonry units (CMU). Two unorthodox test methods, the double punch test (DPT) and helix pull-out test (HPT), were selected as methods for assessing mortar joints. In addition, confining effects from neighboring material common to DPT were evaluated as a function of specimen face dimensions. The compressive strength ratio obtained through testing of 2-in cubic and 2 by 4-in cylindrical specimens was lower than ASTM recommendations. This may have been in part due to testing cylindrical specimens with rough surfaces and no capping material. DPT confinement on 2-in square and 2-in diameter circular specimens was found to be equivalent. Thinly sliced specimens tested in DPT showed increases in compressive strength as water content and specimen thickness decreased. As a whole, DPT results on thin mortar slices showed promise for accurate comparison to prismatic mortar specimens. In-place mortar joints tested in HPT showed moderate to high scatter. In addition, evaluation via HPT was determined to be more appropriate for qualitative rather than quantitative assessments of in-situ mortar.
77

Green Packaging Development. : A way to efficient, effective and more environmental friendly packaging solutions.

Mian Muhammad, Masoud January 2011 (has links)
Growing pressure on the packaging design to enhance the environmental and logistics performance of a packaging system stresses the packaging designers to search new design strategies that not only fulfill logistics requirements in the supply chain, but also reduce the CO 2emissions during the packaging life cycle. This thesis focuses on the packaging design process and suggests some improvements by considering its logistics performance and CO 2emissions. A Green packaging development model was proposed for corrugated box design to explore the inter-dependencies that exist among compressive strength, waste and CO2emissions. The verification of the proposed model unveils the significance of a holistic view of the packaging system in the packaging design process and reveals the importance of packaging design decisions on the logistics performance and CO 2 emissions. The thesis finally concluded that the packaging logistics performance should be considered in a packaging design process to explore the Green packaging design solution.
78

STRENGTH-STIFFNESS CORRELATIONS FOR CHEMICALLY TREATED SOILS

Pranavkumar Shivakumar (12535903) 01 June 2022 (has links)
<p> The central theme of the study is to identify strength-stiffness correlations for chemically treated subgrade soils in Indiana. This was done by conducting Unconfined Compression (UC) tests and resilient modulus tests for soils collected at three different sites, namely : US 31, SR 37 and I-65. At each site, soil samples were obtained from 11 locations at 30 ft spacing. The soils were treated in the laboratory with cement, using the same proportions used for construction, and cured for 7 and 28 days before testing. Results from the UC tests were compared with the resilient modulus results that were available. No direct correlation was found between resilient modulus and UCS parameters for the soils investigated in this study. A brief statistical analysis of the results was conducted, and a simple linear regression model involving the soil characteristics (plasticity index, optimum moisture content and maximum dry density) along with UCS and resilient modulus parameters was proposed.  </p>
79

Geomechanical testing of non-hardening grout : for determination of flowability and strength properties

Barrdahl, Axel January 2022 (has links)
Due to an increasing amount of aging tendencies in Swedish embankment dams, failures such as internal erosion has become a more common problem. Internal erosion is a phenomenon where certain soil material within the embankment dam is removed, often over a longer period of time. It is most common to occur at the inner core of the dam, and if it is allowed to continue for a longer time period the consequences can be disastrous. During the internal erosion, the inner material is washed out, creating larger voids and lowering the geotechnical stability of the dam. When larger voids start to appear, the seepage will increase allowing more material to be washed out and accelerating the process.  In order to repair an embankment dam, exposed to inner erosion, it requires both the location of the faults as well as a suitable method of repairing. A method to repair internal erosion is by using grout and injecting it into the location of the fault. The knowledge regarding what type of grout and how it should be treated is today lacking.  There are reasons to believe that a hardening mixture within an embankment dam using a till core will not cooperate well. For that reason, a grout with non-hardening properties is of interest. this thesis focuses on the Geomechanical strength parameters of two similar experimental non-hardening grouts. One with maximum grain size of 2 mm referred as grout 0/2, and one with maximum grain size of 4 mm, referred to as grout 0/4. The grouts consist of natural aggregates, calcium carbonate, water, bentonite, superplasticizer and defoamer.   The grouts are evaluated by its undrained shear strength, water content, bulk- and dry density using fall cone tests and uniaxial compressive strength tests. To evaluate the grouts angle of friction and angle of dilatancy together with young’s modulus, consolidated, drained triaxial tests were performed. Three tests with different consolidation pressures (50, 150 and 300 kPa) were performed for each grout. Since the grout will gain strength with time, the tests have been performed after certain number of days in order to see the development of the grouts. The laboratories stretch from 0 to 112 days since the time of mixing the grout, and was performed at Luleå University of technology.  Fall cone tests showed that the grout should most likely be mixed on site and left unstirred. Continuously stirring the grout quickly removed the grouts flowability which is why longer transportation should be avoided. At the same time, the accuracy of the grouts mixing is very demanding which needs to be taken into consideration.  Triaxial tests showed that the grout 0/2 had dilatant behavior for 50 and 150 kPa consolidation pressure while 300 kPa showed contractive behavior. The grout 0/4 had dilatant behavior for 50 kPa consolidation pressure while 150 and 300 kPa showed contractive behavior. A theory to explain this behavior was constructed where the bentonite is believed to be behind it. Bentonite slurries behave as a Bingham fluid, where it requires a certain amount of shear stress for the fluid to start to flow. With the same reasoning, the low consolidation pressures do not exceed that threshold, resulting in dilatant behavior. But once that threshold is surpassed the grout starts to contract. In addition, flow curve tests were performed for additives, superplasticizer and defoamer. Both these substances showed Newtonian behavior which leaves Bentonite to be the only additive with Binghamian behavior. / På grund av en ökad mängd med föråldrandetendenser hos svenska jordfyllningsdammar har brott så som inre erosion blivit ett alltmer vanligt problem. Inre erosion är ett fenomen där en viss jord inom jordfyllningsdammen är avlägsnad, generellt över en längre tidsperiod. Oftast inträffar detta vid den inre damkärnan och om erosionen är tillåten att fortskrida sig över en längre period kan konsekvenserna bli förödande. Inre erosion fungerar så att jordmaterial tvättas ut vilket skapar hålutrymmen och minskar den geotekniska hållfastheten för dammen. När större hålutrymmen bildats ökar läckaget som i sin tur tillåter mer material att bli urtvättat och processen blir accelererad. För att kunna reparera en jordfyllningsdam, utsatt för inre erosion, krävs både att platsen för brottet och metoden för att reparera är kända. En metod för att reparera inre erosion är genom att använda injektering och injektera hålutrymmet. Dock är kunskapen gällande vad för typ av injektering och hur den ska hanteras icke existerande i dagsläget. Det finns anledning att tro att ett härdande bruk inom en jordfyllningsdam, med en moränkärna, inte kommer samarbeta särskilt bra. På grund av det har ett bruk med icke-härdande egenskaper undersökt. Den här uppsatsen fokuserar på de geotekniska hållfasthetsegenskaperna för två liknande experimentella icke-härdande bruk. Ett med maximal kornstorlek på 2 mm benämnd som bruk 0/2 och ett med maximal kornstorlek på 4 mm, benämnd som bruk 0/4. Bruket består av natursand, kalciumkarbonat, vatten, bentonit, mjukgöringsmedel och skumdämpare. Bruken är utvärderade genom deras odränerade skjuvhållfasthet, vattenkvot, skrym- och torrdensiteten som har tagits fram från fallkorns-test och enaxiella trycktest (UCS).  För att utvärdera brukens friktionsvinkel och dilationsvinkel tillsammans med styvheten (initiella och 50 %) har konsoliderat, dränerat triaxiala tests utförts. Tre test med varierande konsolideringstryck (50, 150 och 300 kPa) har utförts för båda bruken. I och med att brukens hållfasthet kommer att öka med tiden, har testerna utförts efter ett visst antal dagar, för att se hur utvecklingen ser ut. Laborationerna har sträckt sig från 0 till 112 dagar sedan det att bruken har blandats, och utfördes vid Luleå Tekniska Universitet. Fallkornstesten visade att bruken bör med största sannolikhet blandas på arbetsplatsen och därefter förbli orörda. Kontinuerlig omrörning visade sig frånta brukens flytförmåga, vilket också är anledning till varför längre transporter bör undvikas. Samtidigt så är noggrannheten vid brukens blandning krävande vilket bör tas i beaktning. De triaxiala tester visade att bruk 0/2 visade ett dilatant beteende för både 50 och 150 kPa konsolideringstryck medan 300 kPa hade ett kontrakterande beteende. Bruket 0/4 hade dilatant beteende för 50 kPa konsolideringstryck medan 150 och 300 kPa visade kontrakterande beteende. En teori för att förklara detta beteende togs fram där bentoniten är den troliga orsaken. Bentonitblandningar (bentonite slurry) beter sig som en Bingham-vätska, där det krävs en viss mängd skjuvspänning för att få vätskan att börja flyta. Med samma resonemang applicerade på bruken innebar det att de låga konsolideringstrycken inte översteg tröskelvärdet, vilket resulterade i ett dilatant beteende. Däremot, när tröskelvärdet väl är överstiget börjar bruket att kontraktera istället. Det gjordes även flödestester på tillsatsmedlen, mjukgöringsmedel och skumdämpare. Testerna visade att båda medel betedde sig Newtoniskt, vilket lämnar bentoniten som det enda tillsatsmedlet med Bingham-beteende.
80

Comparative evaluation of the compressive strength surface hardness and porosity of a selection of capsule-mixed versus hand-mixed Glass lonomer cements

Arnold, Samantha January 2019 (has links)
Introduction: Glass ionomers are available in sets of powder and liquid constituents, which are dispensed using a scoop and dropper bottle system prior to hand-mixing by an operator. Glass ionomers are also available in capsulated form, which is mixed in a suitable mechanical mixing machine prior to clinical use. Capsulation enables uniform proportioning of the powder and liquid. In this context, mixing time will be correct as an automated process is utilised, resulting in a cement mixture that is optimal and reproducible, with minimal air entrapment. Manufacturers promote the capsulated form as being time saving, and easy to dispense, with more accurate adaptation because of the use of an applicator to place the material. Aim: The aim of this in vitro study was to compare the performance of hand-mixed glass ionomer materials with their capsule-mixed equivalents in terms of compressive strength, surface hardness and porosity. Materials and Methods: Four groups of 10 cylindrical specimens were manufactured for each of the four specified hand-mixed posterior glass ionomers for each test that was performed: Riva Self Cure (RSCH) (SDI Limited); GC Fuji IX GP (FIXH) (GC Corp); Ketac Universal (KUH) (3M ESPE) and Ketac Molar Easymix (KMH) (3M ESPE). Similarly, four groups of 10 cylindrical specimens were manufactured for each of the four equivalent capsule-mixed posterior glass ionomers for each test that was performed: Riva Self Cure (RSCC) (SDI Limited); GC Fuji IX GP (FIXC) (GC Corp); Ketac Universal Aplicap (KUC) (3M ESPE) and Ketac Molar Aplicap (KMC) (3M ESPE). The compressive fracture strength of each specimen was determined after 24 hours using a universal testing apparatus. A compressive load of 1 mm/min was applied to the 6 mm long axis of each specimen. The load to fracture was recorded and the compressive fracture strength was calculated. Within one hour after compressive strength testing, a selection of fragments from each specimen was examined by Scanning Electron Microscope (SEM). Fragments were vacuum gold-sputter-coated prior to SEM examination. The fragments were observed at an operating voltage of 10kV, and over a range of magnifications to investigate crack propagation. The surface hardness of each specimen was measured with a digital micro-hardness tester with Vickers diamond indenter. The indenter was set at a load of 500mN at five predetermined regions of each specimen, with a dwell-time of five seconds. The five readings for each specimen were computed and the mean VHN in N/mm2 for each specimen was determined. Each specimen was observed and analysed for porosity using Micro-CT. Three-dimensional reconstructions were made of each specimen and the number of voids per volume (mm3) of specimen, the total volume of voids (mm3) per volume of specimen and the volume percentage of voids per volume of specimen were calculated. Results: RSCH and RSCC showed statistically significant differences when compressive strength (p=0.027), volume of voids (p=0.005) and volume percentage of voids (p=0.005) were compared. No statistically significant differences were found between RSCH and RSCC when surface hardness (p=0.124) and number of voids (p=0.221) were compared. When compressive strength (p=0.254) and number of voids (p=0.210) of FIXH and FIXC were compared, no statistically significant differences were found. Statistically significant differences were found when surface hardness (p=0.031), volume of voids (p<0.001) and volume percentage of voids (p<0.001) of FIXH and FIXH were compared. No statistically significant difference was found when compressive strength (p=0.090) of KUH and KUC were compared. Statistically significant differences were found when surface hardness (p<0.001), number of voids (p<0.001), volume of voids (p=0.004) and volume percentage of voids (p=0.004) of KUH and KUC were compared. Statistically significant differences were found between KMH and KMC when compressive strength (p<0.001), surface hardness (p=0.006), number of voids (p=0.001), volume of voids (p=0.010) and volume percentage of voids (p=0.010) were compared. Conclusion: The current study suggests that RSCC is more advantageous for clinical use compared to RSCH. The results as to whether the capsule-mix or the hand-mix product are superior for the examined properties for GC Fuji IX GP are inconclusive. KUC surpassed KUH in tests performed and is therefore recommended for clinical use. KMC out-performed KMH in all tests conducted, and is therefore advocated for use in clinical practice. / Dissertation (MSc)--University of Pretoria, 2019. / Community Dentistry / MSc / Unrestricted

Page generated in 0.088 seconds