Spelling suggestions: "subject:"[een] CONDITIONAL VALUE AT RISK"" "subject:"[enn] CONDITIONAL VALUE AT RISK""
31 |
Měření systémového rizika v časově-frekvenční doméně / Measuring systemic risk in time-frequency domainMuzikářová, Ivana January 2015 (has links)
This thesis provides an analysis of systemic risk in the US banking sector. We use conditional value at risk (∆CoVaR), marginal expected shortfall (MES) and cross-quantilogram (CQ) to statistically measure tail-dependence in return series of individual institutions and the system as a whole. Wavelet multireso- lution analysis is used to study systemic risk in the time-frequency domain. De- composition of returns on different scales allows us to isolate cycles of 2-8 days, 8-32 days and 32-64 days and analyze co-movement patterns which would oth- erwise stay hidden. Empirical results demonstrate that filtering out short-term noise from the return series improves the forecast power of ∆CoVaR. Eventu- ally, we investigate the connection between statistical measures of systemic risk and fundamental characteristics of institutions (size, leverage, market to book ratio) and conclude that size is the most robust determinant of systemic risk.
|
32 |
Portfolio Optimization : A DCC-GARCH forecast with implied volatilityBigdeli, Sam, Bengtsson, Filip January 2019 (has links)
This thesis performs portfolio optimization using three allocation methods, Certainty Equivalence Tangency (CET), Global Minimum Variance (GMV) and Minimum Conditional Value-at-Risk (MinCVaR). We estimate expected returns and covariance matrices based on 7 stock market indices with a DCC-GARCH model including an ARMA (1.1) process and an external regressor of an implied volatility index (VIX). We then simulate returns using a rolling window of 500 daily observations and construct portfolios based on the allocation methods. The results suggest that the model can sufficiently estimate expected returns and covariance matrices and we can outperform benchmarks in form of equally weighted and historical portfolios in terms of higher returns and lower risk. Over the whole out-of-sample period the CET portfolio yields the highest mean returns and GMV and MinCVaR can significantly lower the variance. The inclusion of VIX has marginal effects on the forecasting accuracy and it seems to impair the estimation of risk.
|
33 |
Programação linear com controle de risco para o planejamento da operação do SIN / Linear programming with risk control for the operation planning of SINRui Bertho Junior 08 March 2013 (has links)
O planejamento da operação energética do sistema interligado nacional brasileiro é realizado por uma cadeia de modelos computacionais de otimização e simulação da operação. Entretanto, o risco de déficit, um importante indicador de segurança energética no setor elétrico, é tratado como uma variável de saída dos modelos computacionais. No planejamento de médio prazo é utilizado o software NEWAVE, que utiliza uma representação agregada em subsistemas equivalentes. Este trabalho propõe a implementação de um modelo de otimização linear para o planejamento da operação de médio prazo capaz de considerar o risco de déficit em sua formulação. Para o controle de risco de déficit, é proposta a utilização da métrica de risco conhecida por CVaR (Conditional Value at Risk), por se caracterizar como uma métrica de risco coerente, além de poder ser implementada por meio de um conjunto de restrições lineares. / The energetic operation planning of the Brazilian interconnected system is performed by a chain of computational models for the system optimization and simulation. However, the deficit risk, an important energy security indicator for the electric sector, is treated as an output variable on the computational models. In the medium-term of the energetic planning is used the software NEWAVE, which uses equivalent systems on aggregated representation. This work proposes the implementation of a linear optimization model for the medium-term of the energetic planning able to consider the deficit risk in its own formulation. To control the deficit risk is proposed the use of the risk metric known as CVaR (Conditional Value at Risk), because it is characterized as a coherent risk metric, and can be implemented through a set of linear constraints.
|
34 |
Contribution à la modélisation et à la gestion dynamique du risque des marchés de l'énergieFrikha, Noufel 01 December 2010 (has links) (PDF)
Cette thèse est consacrée à des problématiques numériques probabilistes liées à la modélisation, au contrôle et à la gestion du risque et motivées par des applications dans les marchés de l'énergie. Le principal outil utilisé est la théorie des algorithmes stochastiques et des méthodes de simulation. Cette thèse se compose de trois parties. La première est dévouée à l'estimation de deux mesures de risque de la distribution L des pertes d'un portefeuille: la Value-at-Risk (VaR) et la Conditional Value-at-Risk (CVaR). Cette estimation est effectuée à l'aide d'un algorithme stochastique combiné avec une méthode de réduction de variance adaptative. La première partie de ce chapitre traite du cas de la dimension finie, la deuxième étend la première au cas d'une fonction de la trajectoire d'un processus et la dernière traite du cas des suites à discrépance faible. Le deuxième chapitre est dédié à des méthodes de couverture du risque en CVaR dans un marché incomplet opérant à temps discret à l'aide d'algorithmes stochastiques et de quantification vectorielle optimale. Des résultats théoriques sur la couverture en CVaR sont présentés puis les aspects numériques sont abordés dans un cadre markovien. La dernière partie est consacrée à la modélisation conjointe des prix des contrats spot Gaz et l'Electricité. Le modèle multi-facteur présenté repose sur des processus d'Ornstein stationnaires à coefficient de diffusion paramétrique.
|
35 |
Risk Measurement, Management And Option Pricing Via A New Log-normal Sum Approximation MethodZeytun, Serkan 01 October 2012 (has links) (PDF)
In this thesis we mainly focused on the usage of the Conditional Value-at-Risk (CVaR) in
risk management and on the pricing of the arithmetic average basket and Asian options in
the Black-Scholes framework via a new log-normal sum approximation method. Firstly, we
worked on the linearization procedure of the CVaR proposed by Rockafellar and Uryasev. We
constructed an optimization problem with the objective of maximizing the expected return
under a CVaR constraint. Due to possible intermediate payments we assumed, we had to deal
with a re-investment problem which turned the originally one-period problem into a multiperiod
one. For solving this multi-period problem, we used the linearization procedure of
CVaR and developed an iterative scheme based on linear optimization. Our numerical results
obtained from the solution of this problem uncovered some surprising weaknesses of the use
of Value-at-Risk (VaR) and CVaR as a risk measure.
In the next step, we extended the problem by including the liabilities and the quantile hedging
to obtain a reasonable problem construction for managing the liquidity risk. In this problem
construction the objective of the investor was assumed to be the maximization of the probability of liquid assets minus liabilities bigger than a threshold level, which is a type of quantile hedging. Since the quantile hedging is not a perfect hedge, a non-zero probability of having
a liability value higher than the asset value exists. To control the amount of the probable deficient
amount we used a CVaR constraint. In the Black-Scholes framework, the solution of
this problem necessitates to deal with the sum of the log-normal distributions. It is known that
sum of the log-normal distributions has no closed-form representation. We introduced a new,
simple and highly efficient method to approximate the sum of the log-normal distributions using
shifted log-normal distributions. The method is based on a limiting approximation of the
arithmetic mean by the geometric mean. Using our new approximation method we reduced
the quantile hedging problem to a simpler optimization problem.
Our new log-normal sum approximation method could also be used to price some options in
the Black-Scholes model. With the help of our approximation method we derived closed-form
approximation formulas for the prices of the basket and Asian options based on the arithmetic
averages. Using our approximation methodology combined with the new analytical pricing
formulas for the arithmetic average options, we obtained a very efficient performance for
Monte Carlo pricing in a control variate setting. Our numerical results show that our control
variate method outperforms the well-known methods from the literature in some cases.
|
36 |
Sample Average Approximation of Risk-Averse Stochastic ProgramsWang, Wei 17 August 2007 (has links)
Sample average approximation (SAA) is a well-known solution methodology for traditional stochastic programs which are risk neutral in the sense that they consider optimization of expectation functionals. In this thesis we establish sample average approximation methods for two classes of non-traditional stochastic programs. The first class is that of stochastic min-max programs, i.e., min-max problems with expected value objectives, and the second class is that of expected value constrained stochastic programs. We specialize these SAA methods for risk-averse stochastic problems with a bi-criteria objective involving mean and mean absolute deviation, and those with constraints on conditional value-at-risk. For the proposed SAA methods, we prove that the results of the SAA problem converge exponentially fast to their counterparts for the true problem as the sample size increases. We also propose implementation schemes which return not only candidate solutions but also statistical upper and lower bound estimates on the optimal value of the true problem. We apply the proposed methods to solve portfolio selection and supply chain network design problems. Our computational results reflect good performance of the proposed SAA schemes. We also investigate the effect of various types of risk-averse stochastic programming models in controlling risk in these problems.
|
37 |
Risk–based modeling, simulation and optimization for the integration of renewable distributed generation into electric power networks / Modélisation, simulation et optimisation basée sur le risque pour l’intégration de génération distribuée renouvelable dans des réseaux de puissance électriqueMena, Rodrigo 30 June 2015 (has links)
Il est prévu que la génération distribuée par l’entremise d’énergie de sources renouvelables (DG) continuera à jouer un rôle clé dans le développement et l’exploitation des systèmes de puissance électrique durables, efficaces et fiables, en vertu de cette fournit une alternative pratique de décentralisation et diversification de la demande globale d’énergie, bénéficiant de sources d’énergie plus propres et plus sûrs. L’intégration de DG renouvelable dans les réseaux électriques existants pose des défis socio–technico–économiques, qu’ont attirés de la recherche et de progrès substantiels.Dans ce contexte, la présente thèse a pour objet la conception et le développement d’un cadre de modélisation, simulation et optimisation pour l’intégration de DG renouvelable dans des réseaux de puissance électrique existants. Le problème spécifique à considérer est celui de la sélection de la technologie,la taille et l’emplacement de des unités de génération renouvelable d’énergie, sous des contraintes techniques, opérationnelles et économiques. Dans ce problème, les questions de recherche clés à aborder sont: (i) la représentation et le traitement des variables physiques incertains (comme la disponibilité de les diverses sources primaires d’énergie renouvelables, l’approvisionnement d’électricité en vrac, la demande de puissance et l’apparition de défaillances de composants) qui déterminent dynamiquement l’exploitation du réseau DG–intégré, (ii) la propagation de ces incertitudes sur la réponse opérationnelle du système et le suivi du risque associé et (iii) les efforts de calcul intensif résultant du problème complexe d’optimisation combinatoire associé à l’intégration de DG renouvelable.Pour l’évaluation du système avec un plan d’intégration de DG renouvelable donné, un modèle de calcul de simulation Monte Carlo non–séquentielle et des flux de puissance optimale (MCS–OPF) a été conçu et mis en oeuvre, et qui émule l’exploitation du réseau DG–intégré. Réalisations aléatoires de scénarios opérationnels sont générés par échantillonnage à partir des différentes distributions des variables incertaines, et pour chaque scénario, la performance du système est évaluée en termes économiques et de la fiabilité de l’approvisionnement en électricité, représenté par le coût global (CG) et l’énergie non fournie (ENS), respectivement. Pour mesurer et contrôler le risque par rapport à la performance du système, deux indicateurs sont introduits, la valeur–à–risque conditionnelle(CVaR) et l’écart du CVaR (DCVaR).Pour la sélection optimale de la technologie, la taille et l’emplacement des unités DG renouvelables,deux approches distinctes d’optimisation multi–objectif (MOO) ont été mis en oeuvre par moteurs de recherche d’heuristique d’optimisation (HO). La première approche est basée sur l’algorithme génétique élitiste de tri non-dominé (NSGA–II) et vise à la réduction concomitante de l’espérance mathématique de CG et de ENS, dénotés ECG et EENS, respectivement, combiné avec leur valeurs correspondent de CVaR(CG) et CVaR(ENS); la seconde approche effectue un recherche à évolution différentielle MOO (DE) pour minimiser simultanément ECG et s’écart associé DCVaR(CG). Les deux approches d’optimisation intègrent la modèle de calcul MCS–OPF pour évaluer la performance de chaque réseau DG–intégré proposé par le moteur de recherche HO.Le défi provenant de les grands efforts de calcul requises par les cadres de simulation et d’optimisation proposée a été abordée par l’introduction d’une technique originale, qui niche l’analyse de classification hiérarchique (HCA) dans un moteur de recherche de DE.Exemples d’application des cadres proposés ont été élaborés, concernant une adaptation duréseau test de distribution électrique IEEE 13–noeuds et un cadre réaliste du système test de sous–transmission et de distribution IEEE 30–noeuds. [...] / Renewable distributed generation (DG) is expected to continue playing a fundamental role in the development and operation of sustainable, efficient and reliable electric power systems, by virtue of offering a practical alternative to diversify and decentralize the overall power generation, benefiting from cleaner and safer energy sources. The integration of renewable DG in the existing electric powernetworks poses socio–techno–economical challenges, which have attracted substantial research and advancement.In this context, the focus of the present thesis is the design and development of a modeling,simulation and optimization framework for the integration of renewable DG into electric powernetworks. The specific problem considered is that of selecting the technology, size and location of renewable generation units, under technical, operational and economic constraints. Within this problem, key research questions to be addressed are: (i) the representation and treatment of the uncertain physical variables (like the availability of diverse primary renewable energy sources, bulk–power supply, power demands and occurrence of components failures) that dynamically determine the DG–integrated network operation, (ii) the propagation of these uncertainties onto the system operational response and the control of the associated risk and (iii) the intensive computational efforts resulting from the complex combinatorial optimization problem of renewable DG integration.For the evaluation of the system with a given plan of renewable DG, a non–sequential MonteCarlo simulation and optimal power flow (MCS–OPF) computational model has been designed and implemented, that emulates the DG–integrated network operation. Random realizations of operational scenarios are generated by sampling from the different uncertain variables distributions,and for each scenario the system performance is evaluated in terms of economics and reliability of power supply, represented by the global cost (CG) and the energy not supplied (ENS), respectively.To measure and control the risk relative to system performance, two indicators are introduced, the conditional value–at–risk (CVaR) and the CVaR deviation (DCVaR).For the optimal technology selection, size and location of the renewable DG units, two distinct multi–objective optimization (MOO) approaches have been implemented by heuristic optimization(HO) search engines. The first approach is based on the fast non–dominated sorting genetic algorithm(NSGA–II) and aims at the concurrent minimization of the expected values of CG and ENS, thenECG and EENS, respectively, combined with their corresponding CVaR(CG) and CVaR(ENS) values; the second approach carries out a MOO differential evolution (DE) search to minimize simultaneously ECG and its associated deviation DCVaR(CG). Both optimization approaches embed the MCS–OPF computational model to evaluate the performance of each DG–integrated network proposed by the HO search engine. The challenge coming from the large computational efforts required by the proposed simulation and optimization frameworks has been addressed introducing an original technique, which nests hierarchical clustering analysis (HCA) within a DE search engine. Examples of application of the proposed frameworks have been worked out, regarding an adaptation of the IEEE 13 bus distribution test feeder and a realistic setting of the IEEE 30 bussub–transmission and distribution test system. The results show that these frameworks are effectivein finding optimal DG–integrated networks solutions, while controlling risk from two distinctperspectives: directly through the use of CVaR and indirectly by targeting uncertainty in the form ofDCVaR. Moreover, CVaR acts as an enabler of trade–offs between optimal expected performanceand risk, and DCVaR integrates also uncertainty into the analysis, providing a wider spectrum ofinformation for well–supported and confident decision making.
|
38 |
Statistické testy pro VaR a CVaR / Statistical tests for VaR and CVaRMirtes, Lukáš January 2016 (has links)
The thesis presents test statistics of Value-at-Risk and Conditional Value-at-Risk. The reader is familiar with basic nonparametric estimators and their asymptotic distributions. Tests of accuracy of Value-at- Risk are explained and asymptotic test of Conditional Value-at-Risk is derived. The thesis is concluded by process of backtesting of Value-at-Risk model using real data and computing statistical power and probability of Type I error for selected tests. Powered by TCPDF (www.tcpdf.org)
|
39 |
Optimalizace parametrů zajištění v pojišťovnictví / Optimization of reinsurace parameters in insuranceDlouhá, Veronika January 2017 (has links)
This thesis is dedicated to searching optimal parameters of reinsurance with a focus of quota-share and stop-loss reinsurance. The optimization is based on minimization of value at risk and conditional value at risk of total costs of the insurer for the recieved risk. It also presents a compound random variable and shows various methods of obtaining its probability distribution, for example ap- proximation by lognormal or gamma mixtures distributions or by Panjer recurive method for continuous severity and numerical method of its solution. At the end of the thesis we can find the calculation of the optimal parameters of reinsurance for a compound random variable based on real data. We use various methods to determine probability distribution and premiums. 1
|
40 |
Stochastic Optimization for Integrated Energy System with Reliability Improvement Using Decomposition AlgorithmHuang, Yuping 01 January 2014 (has links)
As energy demands increase and energy resources change, the traditional energy system has been upgraded and reconstructed for human society development and sustainability. Considerable studies have been conducted in energy expansion planning and electricity generation operations by mainly considering the integration of traditional fossil fuel generation with renewable generation. Because the energy market is full of uncertainty, we realize that these uncertainties have continuously challenged market design and operations, even a national energy policy. In fact, only a few considerations were given to the optimization of energy expansion and generation taking into account the variability and uncertainty of energy supply and demand in energy markets. This usually causes an energy system unreliable to cope with unexpected changes, such as a surge in fuel price, a sudden drop of demand, or a large renewable supply fluctuation. Thus, for an overall energy system, optimizing a long-term expansion planning and market operation in a stochastic environment are crucial to improve the system's reliability and robustness. As little consideration was paid to imposing risk measure on the power management system, this dissertation discusses applying risk-constrained stochastic programming to improve the efficiency, reliability and economics of energy expansion and electric power generation, respectively. Considering the supply-demand uncertainties affecting the energy system stability, three different optimization strategies are proposed to enhance the overall reliability and sustainability of an energy system. The first strategy is to optimize the regional energy expansion planning which focuses on capacity expansion of natural gas system, power generation system and renewable energy system, in addition to transmission network. With strong support of NG and electric facilities, the second strategy provides an optimal day-ahead scheduling for electric power generation system incorporating with non-generation resources, i.e. demand response and energy storage. Because of risk aversion, this generation scheduling enables a power system qualified with higher reliability and promotes non-generation resources in smart grid. To take advantage of power generation sources, the third strategy strengthens the change of the traditional energy reserve requirements to risk constraints but ensuring the same level of systems reliability In this way we can maximize the use of existing resources to accommodate internal or/and external changes in a power system. All problems are formulated by stochastic mixed integer programming, particularly considering the uncertainties from fuel price, renewable energy output and electricity demand over time. Taking the benefit of models structure, new decomposition strategies are proposed to decompose the stochastic unit commitment problems which are then solved by an enhanced Benders Decomposition algorithm. Compared to the classic Benders Decomposition, this proposed solution approach is able to increase convergence speed and thus reduce 25% of computation times on the same cases.
|
Page generated in 0.0738 seconds