• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 26
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 200
  • 77
  • 37
  • 34
  • 32
  • 27
  • 26
  • 25
  • 23
  • 22
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Synthesis, characterization and optoelectronic applications of new conjugated organic and organometallic polymers

Zhan, Hongmei 01 January 2011 (has links)
No description available.
52

Surface and Interface Engineering of Conjugated Polymers and Nanomaterials in Applications of Supercapacitors and Surface-functionalization

Hou, Yuanfang 23 May 2016 (has links)
In this dissertation, three aspects about surface and interface engineering of conjugated polymers and nanomaterials will be discussed. (i) There is a significant promise for electroactive conjugated polymers (ECPs) in applications of electrochemical devices including energy harvesting, electrochromic displays, etc. Among these, ECPs has also been developed as electroactive materials in electrochemical supercapacitors (ESCs). Compared with metal oxides, ECPs are attractive because they have good intrinsic conductivity, low band-gaps, relatively fast doping-and-undoping process, the ease of synthesis, and tunable electronic and structural properties through structural modifications. Here, Multiple-branch-chain 3,4-ethylenedioxythiophene (EDOT) derivatives was designed as crosslinkers in the co-electropolymerization of EDOT to optimize its morphology and improve the cycling stability of PEDOT in the supercapacitor applications. High-surface-area π-conjugated polymeric networks can be synthesized via the electrochemical copolymerization of the 2D (trivalent) motifs benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) with EDOT. Of all the material systems studied, P(TEBTT/EDOT)-based frameworks achieved the highest areal capacitance with values as high as 443.8 mF cm-2 (at 1 mA cm-2), higher than those achieved by the respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2); PEDOT: 12.1 mF cm-2 (at 1 mA cm-2). (ii) In electrochemical process, the suitable choice of appropriate electrolytes to enlarge the safe working potential window with electrolyte stability is well known to improve ECPs’ performance in ESCs applications. Ionic liquids (ILs) are ion-composed salts and usually fluid within a wide temperature range with low melting points. There are many unique characteristics for these intrinsic ion conductors, including high ionic conductivity, wide electrochemical voltage windows in neutral conditions, fast ion mobility in redox reaction process (>10-14 m2 V-1 s-1), low vapor pressure, and environmental stability. These properties qualified ambient-temperature ILs to be applied as supporting medium for various devices and materials processing applications in both industry and academia, overcoming the limitation of volatile organic compounds (VOCs). Especially, ILs have been utilized as superior medium to electrodeposit metals, alloys, semiconductors and ECPs in the application of supercapacitors. Electropolymerization of EDOT and its derivative 4,4'-dimethoxy-3,3'-bithiophene (BEDOT) have been studied in three kinds of imidazolium-based ionic liquids and conducting salt in VOCs with different anions both as the growth medium and the supporting electrolyte, to assess the influence of these anions on their morphology and electrochemical activity. It is found these thiophene polymers grown in ILs with higher viscosity and lower diffusion shows much slower growth rate and orderly morphologies than in Tetrabutylammonium hexafluorophosphate (TBAPF6) dissolved in acetonitrile (ACN), and gives better electrochemical performance via cyclic voltammetry (CV) and galvanostatic charge-and-discharge (CD) studies. Polymers displayed multiple redox peaks in several cases, the possible reasons and origins are discussed. The synthesized polymer can be affected greatly by both the ILs with different anion/cation, and its mutal interation with targeted monomer.. As far as known, there is no systematic study on how the anions of ILs and common organic solution could play a role as a medium both for polymerization and post-polymerization electrolyte for PEDOT and its derivatives. This study can be used as an easy reference and provide experimental diagnositc data when selecting ionic liquids to investigate and optimize thiophene-based electrochemical systems, such as batteries and supercapactiors. (iii) Another aspect about interface chemistry of direct functionalization of nanodiamond with maleimide has also been addressed. Functional nanodiamonds are promising candidates for extensive practical applications in surface science, photonics and nanomedicine. Here, a protocol of direct functionalization is described by which maleimide-derivatized substituents can be appended to the outer shell of thermally annealed nanodiamonds through Diels-Alder reaction. This protocol can be carried out in room temperature, ambient atmosphere, without catalyst, and provide functionalized nanodiamonds with good solubility in organic solution. Also, this method can be applied for other maleimide derivatives,e.g.m aleimide-fluorescene, which can be applied in fluorescence labeling, sensing, and drug delivery. A series of techniques, especially Fourier transform infrared spectroscopy (FTIR), and Solid State Nuclear Magnetic Resonance (SS-NMR) was conducted for the analysis of surface chemistry and the investigation of the two-point binding strategy in details.
53

Controlled Assembly Structures of Conjugated Polymers Mediated by Coordination Nanospaces / 配位ナノ空間を用いた共役高分子の集積構造制御

Kitao, Takashi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20410号 / 工博第4347号 / 新制||工||1674(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 北川 進, 教授 松田 建児, 教授 杉野目 道紀 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
54

Purification of Semiconducting and Metallic Single-Walled Carbon Nanotubes Using Conjugated Polymers

Bodnaryk, William January 2020 (has links)
Single-walled carbon nanotubes (SWNTs) have attracted extensive research effort since their discovery nearly 30 years ago. Their impressive mechanical, optical, thermal, and electronic properties make them promising candidates for incorporation into a variety of applications. Depending on the method used for SWNT synthesis, different diameter ranges can be produced. Within these diameter ranges, a heterogeneous mixture of semiconducting and metallic species are present. The combination of these electronic species, as well as their minimal solubility in common solvents, hinders their incorporation into electronic devices, providing reasons for the development of scalable purification techniques. Although, some impactful purification strategies have been developed in recent literature, the use of conjugated polymers is considerably more scalable, less expensive, and offers processability of the final purified material. At the time of this thesis, the purification of semiconducting SWNTs has been realized using electron-rich conjugated polymers such as polyfluorenes, polycarbazoles, and polythiophenes. For metallic SWNTs, less progress has been made. When enriched, metallic SWNTs could act as an effective replacement for common metals in conductive applications. The objective of this work is to develop an efficient and scalable technique for the dispersion of metallic SWNTs and to shed light on the effect of polymer electronics on SWNT dispersion selectivity using nitrated poly(fluorene-co-phenylene)s and cationic poly(fluorene-co-pyridine)s. These investigations lead to the development of novel techniques using multiple conjugated polymers to yield enriched metallic SWNT samples. A secondary objective of this work is to investigate the gentle removal of the polymer, post-purification using UV-irradiation to cleave the polymer linkages of a poly(carbazole-co-terephthalate). Characterization of the polymer-SWNT composites is carried out using absorbance, photoluminescence, and Raman spectroscopy techniques to evaluate their electronic purity. / Thesis / Doctor of Philosophy (PhD)
55

Polymer/Fullerene Photovoltaic Devices - Nanoscale Control of the Interface by Thermally-controlled Interdiffusion

Drees, Martin 11 June 2003 (has links)
In this thesis, the interface between the electron donor polymer and the electron acceptor fullerene in organic photovoltaic devices is studied. Starting from a bilayer system of donor and acceptor materials, the proximity of polymer and fullerene throughout the bulk of the devices is improved by inducing an interdiffusion of the two materials by heating the devices in the vicinity of the glass transition temperature of the polymer. In this manner, a concentration gradient of polymer and fullerene throughout the bulk is created. The proximity of a fullerene within 10 nm of any photoexcitation in the polymer ensures that the efficient charge separation occurs. Measurements of the absorption, photoluminescence, and photocurrent spectra as well as I-V characteristics are used to study the interdiffusion and its influence on the efficiency of the photovoltaic devices. In addition, the film morphology is studied on a microscopic level with transmission electron microscopy and with Auger spectroscopy combined with ion beam milling to create a depth profile of the polymer concentration in the film. Initial studies to induce an interdiffusion were done on poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) as the electron donor polymer and the buckminsterfullerene C60 as the electron acceptor. Interdiffused devices show an order of magnitude photoluminescence quenching with concomitant increase in the photocurrents by an order of magnitude. Variation of the polymer layer thickness shows that the photocurrents increase with decreasing thickness down to 70 nm due to charge transport limitation. The choice of layer thickness in organic photovoltaic devices is critical for optimization of the efficiency. The interdiffusion process is also monitored in situ and a permanent increase in photocurrents is observed during the heat treatment. Transmission electron microscopy (TEM) studies on cross sections of the film reveal that C60 interdiffuses into the MEH-PPV bulk in the form of >10 nm clusters. This clustering of C60 is a result of its tendency to crystallize and the low miscibility of C60 in MEH-PPV, leading to strong phase separation. To improve the interdiffusion process, the donor polymer is replaced by poly(3-octylthiophene-2,5-diyl) (P3OT), which has a better miscibility with C60. Again, the photocurrents of the interdiffused devices are improved significantly. A monochromatic power conversion efficiency of 1.5 % is obtained for illumination of 3.8 mW/cm2 at 470 nm. The polymer concentration in unheated and interdiffused films is studied with Auger spectroscopy in combination with ion beam milling. The concentration profile shows a distinct interface between P3OT and C60 in unheated films and a slow rise of the P3OT concentration throughout a large cross-section of the interdiffused film. TEM studies on P3OT/C60 films show that C60 still has some tendency to form clusters. The results of this thesis demonstrate that thermally-controlled interdiffusion is a viable approach for fabrication of efficient photovoltaic devices through nanoscale control of composition and morphology. These results are also used to draw conclusions about the influence of film morphology on the photovoltaic device efficiency and to identify important issues related to materials choice for the interdiffusion process. Prospective variations in materials choice are suggested to achieve better film morphologies. / Ph. D.
56

Effects of Thickness, Morphology and Molecular Structure of Donor and Acceptor Layers in Thermally Interdiffused Polymer Photovoltaics

Gopal, Anamika 02 May 2007 (has links)
An in-depth study of concentration gradients in thermally-interdiffused polymer – fullerene photovoltaic devices, with a focus on thickness and heat treatments, is presented in this thesis. Device performance is improved from the bilayer by the creation of a concentration gradient of the donor and acceptor materials throughout the active layer of the device. Concentration gradients are expected to improve device performance by optimizing the charge transfer, transport and collection processes. This is achieved through heat-induced interdiffusion of the two materials at temperatures above the glass transition temperature of the polymer. Investigation of the poly(3-octylthiophene) (P3OT) – C₆₀ system show a three-fold improvement in the external quantum efficiencies (EQE) as compared with bilayer devices. Auger spectroscopy, combined with argon-ion beam milling, serves to record the concentration depth profile and identify concentration gradients in the device through detection of the sulfur in the P3OT backbone. Concentration gradients are optimized to yield the best devices through a thickness variation study conducted on the P3OT – C₆₀ system for fixed thermal interdiffusion conditions at 118 °C for 5 minutes. An optimum thickness of 40 to 60 nm is obtained for the two materials that yields the ideal morphology of a concentration gradient as recorded by Auger spectroscopy. For such devices, the concentration gradient is seen to extend through the device, ending in a thin layer of pure material at each electrode. A monochromatic power conversion efficiency of 2.05% is obtained for 5.3 mW/cm²⁺ illumination at 470 nm. A brief study is also presented to optimize the concentration gradient profile through variations of the thermal parameters. The dependence of the concentration gradient on the interdiffusion time and temperature is investigated. The merits of heat treatment on the crystallinity of P3OT and the overall device performance are also discussed. It is shown in some case that devices with annealed P3OT layers show almost twice the EQE as non-annealed P3OT layer devices. Potential alternatives for C₆₀ in interdiffused devices with P3OT have been presented. [6,6]-phenyl C₆₁-butyric acid methyl ester (PCBM), a well-investigated acceptor for blend devices, is studied as an acceptor in concentration gradient devices. A method for spin-coating uniform bilayers of P3OT and PCBM, without solution damage to either layer, is presented. A thermal variation study of the interdiffusion conditions on this system indicated higher interdiffusion temperatures and times are preferred for P3OT – PCBM systems. For interdiffusion at 150 °C for ten minutes, EQE values approaching 35 % at 500 nm are obtained. Auger spectroscopy studies on this system yielded the same conclusions about the concentration gradient device morphology that gives optimum device output. 1:1 and 1:2 blends of P3OT – PCBM are also studied. The influence of various thermal treatments on these devices is described. The endohedral fullerene Sc₃N@C₈₀ is introduced as a new acceptor material. The endohedral fullerene consists of Sc₃N cluster enclosed in a C₈₀ cage. An order of magnitude increase is seen in device performance upon sublimation of these molecules on a P3OT layer confirming its effectiveness as an acceptor. Preliminary studies done on this system indicated the need for greater thermal treatment to produce optimum concentration gradients. An in depth study for varying temperatures and times is presented. The best device performance was seen for interdiffusion at 160 °C for 25 minutes. The endohedral fullerene devices also show a long-term deterioration and so best result are presented from a set of devices fabricated within the same time period. The study of these three donor-acceptor systems confirms that the conclusions on the thickness dependence and device performance study conducted for the P3OT – C₆₀ system extend to other acceptors. A model of EQE for varying thicknesses based on absorption in the interdiffused concentration gradient regions is also presented. This model effectively highlights the influence of P3OT layer thickness on the trends observed in the EQE. It did not, however, reproduce the experimental thickness variation results for varying C₆₀ thicknesses. Incorporation of the effects of the electric field intensity distribution is expected to correct for this. Suggestions have been given on how this might be achieved. / Ph. D.
57

The fabrication and lithography of conjugated polymer distributed feedback lasers and development of their applications

Richardson, Scott January 2007 (has links)
This thesis presents a study of lasing properties and optical amplification in semiconducting conjugated polymers and dendrimers. Configured as surface-emitting distributed feedback lasers, the effect of incorporating wavelength-scale microstructure on the output of the devices is examined along with the ability to create such structures using simplified fabrication processes such as soft lithography. Conjugated materials have received a great deal of interest due to their broad spectral absorption, emission, ability to exhibit gain and ease of processing from solution. As a result, they show great potential for a variety of applications such as photovoltaics, displays, amplifiers and lasers. To date however, there has only been one demonstration of a polymer optical amplifier. A broadband, solution based polymer amplifier is presented where the gain overlaps with the transmission window of polymer optical fibres. The effect of transitions that reduce the availability of gain in conjugated polymers is also examined by studying saturation of absorption in thin films. Producing wavelength scale microstructure is traditionally a slow, expensive technique. Here, solvent assisted micromoulding is used to pattern polymer films in less than two minutes. The effect of the variations in the pattern transfer on the laser characteristics is examined. The micromoulding technique is then applied to fabricating novel device types such as circular gratings and flexible plastic lasers. Encapsulation of the micromoulded laser is then shown to improve the lifetime of the device by over three orders of magnitude. The degradation effects witnessed during this extended operation are characterised quantitatively, an area of study where little data exists in the literature. A novel class of branched dendrimer materials whose properties can be independently tuned due to their modular architecture are configured as blue-emitting distributed feedback lasers. The ability to tune the emission wavelength by varying the film thickness is demonstrated. By changing the chemical groups contained within the molecule, further tuning of the emission can be obtained along with the demonstration of a highly efficient blue-emitting dendrimer laser. Chemosensing using dendrimer lasers is presented by demonstrating the incredibly sensitive response of the laser device to trace vapours of nitro-benzene compounds. The future application of which could be highly beneficial in the detection of explosives.
58

Synthesis And Self-Assembly Properties of Chiral Diketopyrrolopyrrole Based Copolymers

Maity, Soham January 2016 (has links) (PDF)
Applications of conjugated polymer (CPs) in optoelectronic devices are critically depend on nature of thin film morphology. In thin film of CPs, the distribution of conjugation length is highly heterogeneous because of conformational defects, distortions of polymer chain and aggregates. A greater understanding of the self-assembly properties of polymer in solution, in particular control over aggregation leads to richer description of electronic properties and hence reproducible fabrication of thin film devices. Recently, chiral CPs have attracted profound interest because of their promising chiroptical properties in thin films and easy control over the selective agglomeration process. In this thesis, we have investigated the role of chiral side-chains on a series of thiophene diketopyrrolopyrrole (TDPP)-benzodithiophene (BDT) based copolymers. Chiral 3,7-dimethyloctyl chain was introduced as an asymmetric chain to incorporate chirality on one of the repeating unit (TDPP) of copolymers. Two polymers with side-chains of identical chirality (S),(S)-PTDPP-BDT; (R),(R)-PTDPP-BDT and a third polymer with similar side-chains of opposite chirality (R),(S)-PTDPP-BDT were synthesized. The chiroptical properties were investigated by UV-visible and circular dichroism (CD) spectroscopy. Figure 1: The structure of the TDPP-BDT copolymers. The copolymers dissolved in a good solvent (e.g. chloroform, chlorobenzene) in which polymers adopts random coil conformation, no chiral response has been observed. However, a critical addition of non-solvent (methanol), the copolymers stack in a chiral fashion and leads to typical bisignate Cotton effects. It is noteworthy that the two polymers, (S),(S)-PTDPP-BDT and (R),(R)-PTDPP-BDT exhibiting a nearly ideal mirror-image relationship in CD spectra (Figure 2a) whereas the (R),(S)-PTDPP-BDT lacks chiropticity even with the addition of methanol. The aggregation induced CD phenomena are dependent on the temperature of solution and do not exhibit reversibility in a heating-cooling cycle. Figure 2: (a) The mirror image Cotton effects of (S),(S)-PTDPP-BDT and (R),(R)-PTDPP-BDT (b) No CD signal was observed for the (R),(S)-PTDPP-BDT polymer. Figure 3: The variation of (a) UV-vis and (b) CD spectra of (R),(R)-PTDPP-BDT polymer with thickness of the solid film. To investigate the role of thickness and annealing temperature on optical and chiroptical properties of polymer films, thin films were prepared using drop-casting method from a solution of chlorobenzene. Both the polymer showed gradual enhancement of CD signal with the increase of film thickness but we did not see any such order with temperature (Figure 3). Figure 4: The morphology observed for the film by (a) AFM; (b); (c) FESEM. The thin film morphology of polymers is characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) (Figure 4). AFM studies show the polymer molecules self-assembled and formed interconnected nanofibers. Whereas FESEM images clearly revealed that, the nanofibers of polymers are predominantly stack in a chiral fashion and mimic a one-handed helix which leads to bisignate Cotton effects. The (S),(S)-PTDPP-BDT and (R),(R)-PTDPP-BDT form fibers with opposite handedness whereas (R),(S)-PTDPP-BDT do not have such preferred handedness. The research described in this thesis aims to explore the role of chiral side-chains to impose chiral stacking and hence resulting chiral expression. Chirality in this class of polymers may endows them promising optoelectronic properties. (For figures pl see the abstract pdf file)
59

Design and syntheses of hole and electron transport donor-acceptor polymeric semiconductors and their applications to organic field-effect transistors

Fu, Boyi 27 May 2016 (has links)
The π-conjugated organic and polymeric semiconducting materials have attracted much attention in the past years due to their significant potential in applications to electronic and optoelectronic devices including organic field-effect transistors (OFETs), organic photovoltaics (OPVs), and organic light-emitting diodes (OLEDs), etc. Yet, organic and polymeric semiconductors still have challenges associated with their relatively low charge carrier (hole and electron) transport mobilities and ambient stability in OFET applications. This dissertation discusses the molecular engineering on backbones and side-chains of π-conjugated semiconducting polymers to enhance the hole and electron field-effect mobilities. Three donor-acceptor copolymers, the hole transport (p-type) poly(hexathiophene-co-benzo- thiazole) (PBT6), the hole transport poly(thiophenes-benzothiadiazole-thiophenes-diketopyrrolo- pyrrole) (pTBTD), and the electron transport (n-type) poly(dithieno-diketopyrrolopyrrole-bithiazole) (PDBTz) have been developed. Besides, the effect of polymer side chains on polymer solution-processability and charge carrier transport properties was systematically investigated: a side chain 5-decylheptadecyl having the branching position remote from the polymer backbone merges the advantages of the improved solubility from traditional branched side chains in which the branch chains are close to polymer backbone and the effective π-π intermolecular interactions commonly associated with linear side chains. This indicates the potential of side chain engineering to facilitate the charge carrier transport performance of organic and polymeric semiconductors. Additionally, PDBTz solution-processing to OFETs based on non-halogenated solvents (xylenes and tetralin) was studied. The resultant thin-film OFET devices based on non-halogenated solvents exhibited similar film morphology and field-effect electron mobilities as the counterparts based on halogenated solvents, indicative of the feasibility of developing high mobility OFET devices through more environmentally-benign processing.
60

Solid state optical conjugated polymer amplifier, with ultrafast gain switching

Amarasinghe, Dimali C. V. January 2008 (has links)
Conjugated polymers are organic materials which are attractive as optoelectronic devices because they have a combination of broad band emission, high gain, versatility in processing, are ductile and can be electrically pumped. This thesis describes work conducted on such conjugated polymers as amplifier devices. The conjugated polymers used in this thesis were MEH-PPV, F8BT, GP1302 and ADS233YE. The amplifier devices used were grating coupled and end coupling waveguides. Amplification of light was demonstrated and characterised on single and multiple pulses using the grating coupled structure. Single pulse measurements obtained gains of 21 and 17 dB in a 1 mm long waveguide using the conjugated polymers MEHPPV and F8BT. Annihilation rate was also analysed in the single pulse method with MEH-PPV, giving a value of γ ≈ (3 ± 0.1) x 10⁻⁹ cm³/s. Amplification of a single pulse led to demonstrate amplification and the capability of the amplifier to function with multiple pulses, which resulted in F8BT being used as the gain medium. An average gain of 18 dB was obtained with F8BT in a 1 mm waveguide channel. Amplification was also investigated with end coupled waveguides. This led into investigating a suitable material or suitable combination of material for amplification with the waveguides. Switching of an amplified pulse was attempted on F8BT and GP1302 in the amplifier device at 5 kHz. Switching of F8BT was problematic which lead to attempt switching in GP1302 which was a co-polymer of PFO and F8BT. A 70 % switching effect was obtained with GP1302. Gain recovery dynamics of F8BT, GP1302 and ADS233YE was also investigated. These measurements established a switching rate of 500 GHz for GP1302 and ADS233YE, and F8BT showed partial gain recovery indicating the presence of long lived species. Switching was also attempted on a polymer laser. This resulted in a 100 % switched pulse with a combination of weak pump and strong switch pulse of 40 nJ and 2 μJ respectively. And a strong pump and weak switch pulse of 200 and 50 nJ respectively. Temporal delay of the switch pulse relative to the pump pulse resulted in re-timing of the laser output. Amplification and switching of light pulses were also attempted at a higher repetition rate of 50 kHz with F8BT, GP1302, ADS233YE and MEH-PPV. This resulted in strong amplification of light in MEH-PPV and F8BT with gains of 21 and 13 dB respectively in a waveguide length of 422 μm. Weak amplification of light in ADS233YE and GP1302 was also obtained with a maximum gain of 8 and 3 dB respectively. Switching was attempted on MEH-PPV and ADS233YE.

Page generated in 0.0653 seconds