• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 48
  • 7
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 192
  • 192
  • 57
  • 39
  • 39
  • 36
  • 36
  • 33
  • 22
  • 22
  • 21
  • 18
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Measurement of sediment oxygen demand in a created urban wetland

Yung, Sonja Burns 22 August 2009 (has links)
Studies were conducted to determine the sediment oxygen demand (SOD) of a created urban wetland, the cause of differences between SOD methods, and the effect of temperature on the rate of exertion of SOD. <i>In situ</i>, laboratory tank, and laboratory core methods were employed to measure the SOD. It was observed that the main cause of differences in the results obtained by the three methods was differing water volume to sediment surface area (V/SA) ratios. SOD was found to increase with increasing V/SA ratios. By approximating the V/SA ratio of the marsh, the SOD for the system was estimated to be 3.08 g/m²/day. A 10°C rise in temperature was observed to more than double the SOD rate. / Master of Science
62

Performance Evaluation of the Town of Monterery Wastewater Treatment Plant Utilizing Subsurface Flow Constructed Wetlands

Kiracofe, Brandon Dean 21 July 2000 (has links)
Field tests were conducted and historical operating data were evaluated to assess the performance of the Monterey WWTP utilizing subsurface flow (SF) constructed wetlands. Previous work with SF wetlands has demonstrated adequate, but variable removal of organic matter, suspended solids, and nitrogen. Few research studies have observed the generation of compounds in the wetlands that affect other treatment processes, specifically reduced compounds that contribute to the chlorine demand. This study attempts not only to distinguish the factors leading to the inadequate performance of the SF wetlands in removing organic matter and nitrogen, but also to identify the cause of the frequent occurrences of a nondetectable chlorine residual in the chlorine contact tank at the Monterey WWTP. Collection and analysis of historical operating data from January 1998 to May 2000 revealed a constantly decreasing removal of carbonaceous biochemical oxygen demand (CBOD5) by the SF wetlands and a poor removal of ammonia-N throughout the system. The decreasing removal of CBOD5 appeared to be caused by clogging of the wetland bed media by accumulated solids. The inability to remove the accumulated solids by pumping was shown. Analysis of field data also showed that the SF wetlands removed 88% of the influent TSS and 71% of the influent CBOD5, while experiencing a 18% increase in ammonia-N. Bisulfide produced in the anaerobic wetland beds accounted for 95% of the chlorine lost in contact tank. The variable production of sulfide is the cause of the frequent nondetectable chlorine concentrations observed. The results of this study suggest that chemical costs of chlorine and sulfur dioxide may be greatly reduced if bisulfide can be removed before chlorination. Also, the use of large rocks as media in SF wetland beds may significantly reduce the physical and biological removal of organic matter. / Master of Science
63

Coal-fired power plant flue gas desulfurization wastewater treatment using constructed wetlands

Paredez, Jose Miguel January 1900 (has links)
Master of Science / Department of Civil Engineering / Natalie Mladenov / In the United States approximately 37% of the 4 trillion kWh of electricity is generated annually by combusting coal (USEPA, 2013). The abundance of coal, ease of storage, and transportation makes it affordable at a global scale (Ghose, 2009). However, the flue gas produced by combusting coal affects human health and the environment (USEPA, 2013). To comply with federal regulations coal-fired power plants have been implementing sulfur dioxide scrubbing systems such as flue gas desulfurization (FGD) systems (Alvarez-Ayuso et al., 2006). Although FGD systems have proven to reduce atmospheric emissions they create wastewater containing harmful pollutants. Constructed wetlands are increasingly being employed for the removal of these toxic trace elements from FGD wastewater. In this study the effectiveness of using a constructed wetland treatment system was explored as a possible remediation technology to treat FGD wastewater from a coal-fired power plant in Kansas. To simulate constructed wetlands, a continuous flow-through column experiment was conducted with undiluted FGD wastewater and surface sediment from a power plant in Kansas. To optimize the performance of a CWTS the following hypotheses were tested: 1) decreasing the flow rate improves the performance of the treatment wetlands due to an increase in reaction time, 2) the introduction of microbial cultures (inoculum) will increase the retention capacity of the columns since constructed wetlands improve water quality through biological process, 3) the introduction of a labile carbon source will improve the retention capacity of the columns since microorganisms require an electron donor to perform life functions such as cell maintenance and synthesis. Although the FGD wastewater collected possessed a negligible concentration of arsenic, the mobilization of arsenic has been observed in reducing sediments of wetland environments. Therefore, constructed wetlands may also represent an environment where the mobilization of arsenic is possible. This led us to test the following hypothesis: 4) Reducing environments will cause arsenic desorption and dissolution causing the mobilization of arsenic. As far as removal of the constituents of concern (arsenic, selenium, nitrate, and sulfate) in the column experiments, only sulfate removal increased as a result of decreasing the flow rate by half (1/2Q). In addition, sulfate-S exhibited greater removal as a result of adding organic carbon to the FGD solution when compared to the control (at 1/2Q). Moderate selenium removal was observed; over 60% of selenium in the influent was found to accumulate in the soil. By contrast, arsenic concentrations increased in the effluent of the 1/2Q columns, most likely by dissolution and release of sorbed arsenic. When compared to the control (at 1/2Q), arsenic dissolution decreased as a result of adding inoculum to the columns. Dissolved arsenic concentrations in the effluent of columns with FGD solution amended with organic carbon reached 168 mg/L. These results suggest that native Kansas soils placed in a constructed wetland configuration and amended with labile carbon do possess an environment where the mobilization of arsenic is possible.
64

Development of Water and Wastewater Biofiltration Technologies for the Developing World using Locally Available Packing Media: Case Studies in Vietnam and Haiti

Thomson, Ashley Anne January 2014 (has links)
<p>Water and sanitation are two of the world's most urgent current challenges (Elimelech, 2006). With a population racing towards seven billion people, over one sixth of the human population does not have access to adequate water and sanitation. Drinking water is inaccessible for approximately 783 million people living in the developing world (WHO, 2014). This is especially critical for people at risk of exposure to deadly pathogens such as <italic>Vibrio cholerae</italic>, <italic>Shigella</italic>, and <italic>Salmonella</italic>, such as those living in Haiti as <italic>Vibrio cholerae</italic> is now ubiquitous (Enserink, 2010). On the sanitation side, more than 2.5 billion people in the world still lack access to adequate resources (WHO, 2014). Almost half of these people have access to no sanitation facilities at all and practice open defecation (WHO, 2014). Thousands of small children still die every day from preventable diseases caused by inadequate sanitation (WHO, 2014). As global climate change is expected to exacerbate these issues, there is an urgent need for the development of sustainable treatment technologies to ensure a better tomorrow for our world (Ford, 1999). Safe water and sanitation technologies, while often disjointed, should be considered together as pathogens transmitted via drinking water are predominantly of fecal origin (Ashbolt, 2004; Montgomery, 2007). </p><p>In this dissertation project, I explore the use of both drinking water and wastewater treatment technologies which are cost effective and rely on locally available materials in low-income countries. For the drinking water treatment side, I focus on the use of biosand filters in Haiti with a specific interest in understanding their ability to remove the pathogen <italic>Vibrio cholerae</italic>, the causative agent for cholera. The wastewater treatment technology consists of biofilters packed with cocopeat, a waste product generated during coconut husk processing, and I investigate their use for the treatment of septic tank effluent in Vietnam. Both of these projects combine lab and field work. The specific objectives of this dissertation project are to 1) compare the removal efficiency of <italic>V. cholerae</italic> to indicator bacteria in field biosand filters and determine the parameters controlling removal; 2) investigate the correlation between removal efficiency of pathogens in field biosand filters having operated for varying lengths of time to schmutzdecke bacterial composition and influent water characteristics; 3) determine the effect of number of charges, total organic carbon loading, and schmutzdecke composition on <italic>V. cholerae</italic> removal efficacy; 4) isolate the effect of biological removal mechanisms and physical/chemical removal mechanisms on <italic>V. cholerae</italic> removal efficiency and determine the correlation to TOC concentration in water; 5) evaluate cocopeat as a packing medium for biofilters in terms of nitrogen, phosphorus and biological oxygen demand removal from simulated wastewater as compared to other traditional packing media; and 6) conduct an assessment of cocopeat-packed, vertical flow constructed wetlands treating septic tank effluent in the Mekong Delta of Vietnam. </p><p>In the first part of this dissertation, biosand filters in the Artibonite Valley of Haiti, the epicenter of the cholera epidemic, were tested for total coliform and <italic>V. cholerae</italic> removal efficiencies. In addition, schmutzdecke samples were collected in order to measure the amount of EPS in the biofilm, as well as characterize the microbial community. Total coliform and <italic>V. cholerae</italic> concentration were measured using novel membrane filtration technique methods. It was found that total coliform concentration does not indicate <italic>V. cholerae</italic> concentration in water, and total coliform removal efficiency does not indicate <italic>V. cholerae</italic> removal efficiency within biosand filters. Additionally, parameters controlling biosand filter performance include: schmutzdecke composition, time in operation, and idle time.</p><p>In the second part of this dissertation, <italic>V. cholerae</italic> challenge tests were performed on laboratory-operated biosand filters receiving high, medium or low TOC influents in order to determine the effect of number of charges, total organic carbon loading, and schmutzdecke composition on <italic>V. cholerae</italic> removal efficacy, as well as to isolate the effect of biological removal mechanisms and physical/chemical removal mechanisms on <italic>V. cholerae</italic> removal efficiency and determine the correlation to TOC concentration in water. To this end, three biosand filters were operated in the lab. Each received lake water or diluted lake water with high, medium or low concentrations of TOC. After being charged once per day for 6 days, the filters were charged with four consecutive charges of pure cultures of <italic>V. cholerae</italic> suspended in PBS buffer, at concentrations of 10<super>2</super>, 10<super>3</super>, 10<super>5</super>, and 10<super>7</super> cfu/mL. This challenge was repeated each time the filters received an additional 6 charges, up to 66 total charges. This was done to determine how number of charges, TOC loading, and schmutzdecke composition affects removal efficiency. Schmutzdecke was analyzed for amount of EPS and microbial community. It was found that parameters controlling biosand filter performance include: TOC loading, schmutzdecke composition, time in operation, and physical/chemical attachment. Additionally, it was shown that physical/chemical attachment is critical during startup, especially at low TOC concentrations. At steady state, physical/chemical attachment is more important than schmutzdecke effects in filters receiving low TOC, and schmutzdecke effect is more important than physical/chemical attachment in filters receiving high TOC.</p><p>For the third section of this dissertation, columns packed with cocopeat, celite, or sphagnum peat were charged with simulated wastewater and removal efficiencies of nitrogen, phosphorus, and biological oxygen demand were measured. Additionally, different redox zones were tested to determine if cocopeat could successfully accomplish nitrification and denitrification. It was found that cocopeat is comparable to traditional packing media and can successfully accomplish nitrification and denitrification in the treatment of synthetic wastewater.</p><p>In the final section of this dissertation, constructed wetlands were built and packed with cocopeat to determine if cocopeat is a suitable packing media in constructed wetlands treating wastewater in Vietnam. Removal efficiencies of nitrogen, phosphorus, and biological demand were measured. Microbial community samples were collected periodically in order to analyze community shifts between wetlands and over time. This work concluded that cocopeat can be used successfully as a packing media in constructed wetlands treating wastewater for the removal of nitrogen, phosphorus, and total coliform.</p><p>Overall, this dissertation work contributes to the body of knowledge on point-of-use water and wastewater technologies. The biosand filter was studied in both lab and field conditions and it was found that total coliform is not a reliable indicator for <italic>V. cholerae</italic>, and that there are several factors controlling biosand filter performance, including idle time, TOC, filter time in operation, physical/chemical attachment, and schmutzdecke composition. Cocopeat was studied for its ability to promote nitrification and denitrification in lab-scale vertical flow columns treating synthetic wastewater. It was shown that cocopeat achieved similar levels of nitrification and denitrification as traditional packing media. Finally, cocopeat packed vertical flow constructed wetlands were operated in Vietnam for the treatment of septic tank effluent. This setup proved effective for the removal of nitrogen, phosphorus, and total coliform in the treatment of wastewater.</p> / Dissertation
65

Zhuji wetland city: stormwater recycle

Chen, Yuxiao., 陳瑜瀟. January 2007 (has links)
published_or_final_version / Architecture / Master / Master of Landscape Architecture
66

Cold-climate constructed wetland applications in Canada and Northern China and modeling applications in the Canadian Arctic using SubWet 2.0

Chouinard, ANNIE 22 October 2013 (has links)
This comparative study explores the mechanisms of pollutant removal efficiency in cold-climate constructed wetlands (CWs) and investigates the benefits, standing and practicability of using these systems to treat wastewater in Canada and Northern China. Treatment efficiencies defined by the Canadian and Northern China experience vary considerably. Experience in both countries shows that the majority of effluent values are generally better than that required by discharge standards in Canada and China. A review of the available case studies on cold weather treatment in both countries indicates that this technology is feasible in Canada and Northern China, although further monitoring data are needed to optimize CW design and ensure that the effluent quality standards are consistently met. In both of these countries and around the globe, increasingly strict water quality standards and the growing application of treatment wetlands for wastewater treatment is an important motive for the development of better numerical models as predictive process design tools. An investigation of the SubWet 2.0 model, a horizontal subsurface flow modeling program used to predict the level of treatment that can be expected was conducted. It has been shown that SubWet can consider the influence of several factors at one time, where empirical equations are generally not able to consider more than two factors at one time and usually in isolation of the other influential parameters. Three different data sets, two from natural wetlands from the Canadian Arctic and one from a CW in Africa were used to illustrate how SubWet can be calibrated to specific wetlands. Compared to other models, it is suggested that SubWet provides one of the best modeling options available for natural tundra wetlands. Further calibration of SubWet with twelve municipal treatment wetlands in the Canadian Arctic clearly demonstrated its ability to model treatment performance within natural tundra wetlands and thus provide an additional predictive tool to aid northern stakeholders in the treatment of municipal effluents. It is anticipated that increased monitoring and the generation of additional measured data will help to better identify the level of year to year variability and improve the overall predictive capability of the model. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-10-22 17:14:23.322
67

Phosphorus Retention and Fractionation in Masonry Sand and Light Weight Expanded Shale Used as Substrate in a Subsurface Flow Wetland

Forbes, Margaret G. 08 1900 (has links)
Constructed wetlands are considered an inefficient technology for long-term phosphorus (P) removal. The P retention effectiveness of subsurface wetlands can be improved by using appropriate substrates. The objectives of this study were to: (i) use sorption isotherms to estimate the P sorption capacity of the two materials, masonry sand and light weight expanded shale; (ii) describe dissolved P removal in small (2.7 m3) subsurface flow wetlands; (iii) quantify the forms of P retained by the substrates in the pilot cells; and (iv) use resulting data to assess the technical and economic feasibility of the most promising system to remove P. The P sorption capacity of masonry sand and expanded shale, as determined with Langmuir isotherms, was 60 mg/kg and 971 mg/kg respectively. In the pilot cells receiving secondarily treated wastewater, cells containing expanded shale retained a greater proportion of the incoming P (50.8 percent) than cells containing masonry sand (14.5 percent). After a year of operation, samples were analyzed for total P (TP) and total inorganic P (TIP). Subsamples were fractionated into labile-P, Fe+Al-bound P, humic-P, Ca+Mg-bound P, and residual-P. Means and standard deviations of TP retained by the expanded shale and masonry sand were 349 + 169 and 11.9 + 18.6 mg/kg respectively. The largest forms of P retained by the expanded shale pilot cells were Fe+Al- bound P (108 mg/kg), followed by labile-P (46.7 mg/kg) and humic-P (39.8). Increases in the P forms of masonry sand were greatest in labile-P (7.5 mg/kg). The cost of an expanded shale wetland is within the range of costs conventional technologies for P removal. Accurate cost comparisons are dependent upon expansion capacity of the system under consideration. Materials with a high P sorption capacity also have potential for enhancing P removal in other constructed wetland applications such as stormwater wetlands and wetlands for treating agricultural runoff.
68

Managing Cattail (Typha latifolia) Growth in Wetland Systems

Sharp, Jessica Little 08 1900 (has links)
Nutrient availability, water depth, competition, and soil management effects on cattail (Typha latifolia) growth in wetland systems were examined. Soluble reactive phosphorous (SRP), nitrate-nitrogen (NO3-N), and ammonia-nitrogen (NH3-N) removals were tested at a constructed wetland receiving municipal wastewater effluent. Over all, no significant differences in nutrients occurred between diverse planted and cattail areas. T. latifolia seeds, under the canopy of Eleochoris macrostachya, had low seed germination. Established stands of emergent vegetation can prevent cattail colonization and spread. Germination of T. latifolia at various water depths was tested, and depth impacts on cattail seedling growth and survival were ascertained using various moist soil management techniques in three ponds. Water levels at 0cm and >40cm can adversely impact cattail establishment.
69

Removal of organic and inorganic nutrients in a constructed rhizofiltration system using macrophytes and microbial biofilms

Mthembu, Mathews Simon January 2016 (has links)
Submitted in complete fulfillment for the degree of Doctor of Philosophy (Biotechnology) in the Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa, 2016. / Many households in developing countries are still without proper sanitation systems. The problems are even more prevalent in rural communities where there are no septic systems in place for the treatment of wastewater. This has resulted in the urgent need for the development and implementation of innovative wastewater treatment systems that are inexpensive, environmental friendly and are able to reduce contaminants to levels that pose no harm to the communities. Constructed rhizofiltration systems have been explored for this purpose. They have been used for many decades in many countries with varying degrees of success at the primary, secondary and tertiary levels of wastewater treatment. Poor optimization of this technology has been due to limited information available about the roles played by the whole system as well as by each component involved in the treatment technology. The current work elucidates the role played by macrophytes and microbial biofilms in the removal of nutrients in the rhizofiltration system. Factors affecting waste removal as well as environmental friendliness of the system were also investigated. The rhizofiltration system was constructed in Durban and was divided into planted (planted with Phragmites australis and Kyllinga nemoralis) and unplanted (reference) section. Dissolved oxygen (DO), pH, water temperature, total dissolved solids (TDS), electrical conductivity (EC) and salinity were monitored. The removal efficiency of nutrients was measured using spectrophotometric methods by measuring the concentration of ammonia, nitrate, nitrite, phosphate and orthophosphate in the wastewater pre- and post-treatment. The total organic carbon, chemical oxygen demand (COD), total Kehldjahl nitrogen, biological oxygen demand (BOD), ammonia, nitrate and the flow rate of wastewater into the system from the settling tank were used for the estimation of carbon dioxide, methane and nitrous oxide emitted from the rhizofilter using the 2009 EPA formulae. Both the planted and reference sections of the system removed nutrients with varying efficiencies. The reduction of nutrients in the rhizofilter was found to be seasonal, with most nutrients removed during the warm seasons. The system also retained more nutrients when wastewater containing low levels of nutrients was used. The unpaired t-test was used to determine the differences between nutrient removals between planted and reference sections. Higher reduction efficiencies of nutrients were obtained in the planted section. Up to 65% nitrite and 99% nitrate were removed while up to 86% total phosphorus was removed in a form of orthophosphate (86%). Removal of total nitrogen was shown to increase under high temperature conditions, while the same conditions decreased the total phosphorus removal. High temperatures also increased the performance of the system. The reduction of nutrients in the system corresponded to reduction of the chemical oxygen demand which also positively correlated to the dissolved oxygen concentration. Considering the discharge limits for all nutrients, the discharges in the effluent of the planted section were within the allowable limits as per South Africa’s Department of Water affairs and Forestry in 2012 but not in 2013. The results obtained in 2013 were due to increased nutrient loading introduced into the system. Diverse microbial communities occurred in the treatment system, with more diversity in the planted section. These organisms were supported by macrophytes in the planted section, and were responsible for nitrogen and phosphorus transformation. This explains why total nitrogen and phosphorus reduction was higher in the planted compared to the reference section. Both the planted and the reference sections of the rhizofiltration system produced the greenhouse gases. When the two sections were compared, the planted section produced more gases. Gases emitted by both sections were lower when compared to emission from sludge treatment reed beds and other conventional systems of wastewater treatments. These findings indicated that constructed rhizofiltration is a cleaner form of waste treatment, producing significantly less greenhouse gases and affecting less of a climate change. Findings of this work have revealed that rhizofiltration technology can be used as a low-cost alternative technology for the treatment of wastewater, using the combination of macrophytes and microbial biofilms. Macrophytes accumulated nitrogen and phosphorus as well as supported diverse microorganisms that metabolized and reduced nutrients in the rhizofiltration unit. / D
70

Mikroplast i dagvatten och spillvatten : Avskiljning i dagvattendammar och anlagda våtmarker / Microplastics in Stormwater and Sewage : Removal in Stormwater Ponds and Constructed Wetlands

Jönsson, Robert January 2016 (has links)
Mikroplast, här definierat som plastobjekt mindre än 5 mm, befaras kunna göra stor skada på vattenlevande djur. Fram tills idag har studier av mikroplastreduktion främst utförts i kommunala avloppsreningsverk där mycket av plasten avskiljs. De stora spillvattenflödena gör ändå reningsverken till betydande utsläppspunkter av mikroplast till sjöar och hav. Information har hittills till stor del saknats om mikroplastförekomst i dagvatten, vilket ofta släpps ut orenat och i större volymer än spillvatten. Förekomst av mikroplast &gt;20 µm (&gt;0,02 mm) har undersökts för tre tätorters dagvatten samt för två avloppsreningsverks utloppsvatten. Avskiljning av mikroplast har undersökts för två spillvattenvåtmarker och två dagvattendammar. Båda anläggningstyper är relativt billiga och effektiva när det gäller reduktion av tungmetaller och övergödande näringsämnen. Örsundsbro våtmark och våtmark Alhagen tar båda emot behandlat spillvatten från kommunala avloppsreningsverk. I våtmark Alhagen finns även ett inlopp för dagvatten från Nynäshamn. Till dagvattenanläggningen Korsängens vattenpark leds en stor del av Enköpings dagvatten, medan Tibbledammen tar emot det dagvatten som kommer från Kungsängen i Upplands-Bro kommun. Vatten från anläggningarnas inlopp och utlopp, samt från två punkter inuti våtmark Alhagen har pumpats genom 20 µm-filter och 300 µm-filter. Provtagningen har kompletterats med insamling av mindre vattenvolymer som har filtrerats på laboratorium. Kvantifiering av mikroplast har gjorts med hjälp av stereomikroskop och vanligt förekommande objekts material har undersökts genom FTIR-spektroskopi. I våtmark Alhagens inkommande spillvatten var mikroplastkoncentrationen 4 objekt/liter, vilket liknar de koncentrationer andra svenska studier uppmätt i behandlat spillvatten. I inkommande vatten till Örsundsbro våtmark var koncentrationen över 950 objekt/liter, långt över vad andra svenska studier uppmätt i helt obehandlat spillvatten. I dagvatteninloppen var mikroplastinnehållet 5,4–10 objekt/liter, vilket indikerar på att mikroplatsutsläpp via dagvatten kan befaras vara minst lika stora som via spillvatten. I alla anläggningars inkommande vatten, förutom i våtmark Alhagens dagvatteninlopp, uppmättes höga koncentrationer av rödfärgade partiklar. Partiklarna kan vara av plast eller av annat okänt material och är till utseendet relativt lika de som andra studier påträffat i svenska kustvatten. Svarta partiklar påträffades i alla inflöden och ofta i mer än 100 gånger högre halter än de för mikroplast och röda partiklar, förutom i våtmark Alhagens spillvatteninlopp där de röda partiklarna var något fler. Partiklarna tros kunna vara däck- och vägrester eller förbränningspartiklar. Alla anläggningar visade på en tydlig avskiljning, ofta 90-100 %, för mikroplast, svarta och röda partiklar &gt;20 µm. Till följd av resultatet samt anläggningarnas variation i ålder, storlek och utformning bör dagvattendammar och anlagda våtmarker generellt kunna förväntas fungera som effektiva barriärer mot spridning av mikroplast, svarta partiklar och röda partiklar. / Microplastics (MPs), here defined as plastic objects smaller than 5 mm, are suspected to cause great harm to fish when released into lakes and oceans. Studies of MP retention have until recently mainly been done for sewage treatment plants (STPs), where much of the plastics are shown to be retained in the sludge. However, due to large water flows in STPs, they can be seen as significant points for the spreading of MPs to recipient waters. Today there isn’t much information to be found about MP contents in stormwater. Stormwater is often released untreated and depending on climate it can be released in greater volumes than sewage water from urban areas. The occurrence of MPs &gt;20 µm (&gt;0.02 mm) has been studied in two STP effluents, and in stormwater from three urban catchments. The retention of MPs has been studied for two stormwater ponds, and for two free water surface wetlands constructed for tertiary treatment of sewage. Wetland Alhagen and Örsundsbro wetland both receive the effluents of secondary STPs. In wetland Alhagen there is also a stormwater inlet from the town of Nynäshamn. To the stormwater pond Korsängens vattenpark, stormwater is lead from the town of Enköping, while the stormwater pond Tibbledammen receives stormwater from Kungsängen in Upplands-Bro municipality. Influents and effluents from the facilities, as well as water from two points within wetland Alhagen was pumped through 20 µm and 300 µm filters. In addition, water from every sampling point was collected in minor volumes for later filtration carried out in a laboratory. Quantification was done with microscopy and a number of objects were analyzed with FTIR spectroscopy for material determination. In wetland Alhagen, the sewage inlet contained 4 MPs/liter, which is similar to results for STP effluents in other Swedish studies. In Örsundsbro wetland, the incoming water contained more than 950 MPs/liter, far greater than what other studies have shown for untreated sewage. The MP concentrations in the three stormwater inlets were between 5.4-10 MPs/liter. This indicates that untreated stormwater could be seen as a pathway for MPs at least as big as treated sewage. In almost all inlets, characteristic red particles were found in great numbers and in sizes of 20-300 µm. Analysis of some of the red particles indicated that they contained plastic while others were of unknown materials. The particles had a similar appearance to red particles commonly found in Swedish coastal waters. Black particles, a kind of microscopic particles that may originate in tyre wear (i.e. MPs) or combustion, was also found in large quantities. Except for in the main influents of wetland Alhagen, where the number of red particles was slightly higher, the black particles were always found in far greater numbers than both regular MPs and red particles (often &gt;100x greater). The retention of MPs, black particles and red particles &gt;20 µm was high in all the facilities, often around 90-100 percent. Based on these results and the variation of size, design and year of construction, stormwater ponds and constructed free water surface wetlands can be seen as effective barriers against the spreading of MPs.

Page generated in 0.0649 seconds