• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 29
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 102
  • 102
  • 42
  • 24
  • 23
  • 17
  • 16
  • 16
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The influence of continuous casting parameters on hot tensile behaviour in low carbon, niobium and boron steels

Chown, Lesley H. 26 February 2009 (has links)
Abstract This thesis studies the factors that govern transverse cracking during continuous casting of low carbon, niobium microalloyed and boron microalloyed steels. Crack susceptibility in the thick slab, billet and thin slab casting processes are compared by using typical conditions in laboratory hot ductility tests. There is limited published literature on hot ductility in aluminium-killed and siliconkilled boron microalloyed steels and the proposed mechanisms of failure by transverse cracking are contradictory. Few published papers specifically compare hot ductility behaviour of any steels between thick slab, billet and thin slab continuous casting processes. Thus, the basis of this research is to assess the influence of casting parameters and compositional variations on hot ductility behaviour in low carbon steels, niobium microalloyed steels, aluminium-killed boron microalloyed steels and silicon-killed, boron microalloyed steels. The typical temperature ranges, cooling rate and strain rate conditions of the continuous casting processes were used in reheated and in situ melted hot tensile tests performed on steel specimens. Solidification, transformation and precipitation temperatures were calculated using solubility equations and modelled using the Thermo-CalcTM thermodynamics program. Scanning electron microscopy and transmission electron microscopy were used to determine the modes of failure in the tested specimens. In the low carbon steels, hot ductility was improved by increasing the strain rate; by calcium treatment, which minimises copper sulphide and iron sulphide formation; and by maintaining a nickel to copper ratio of 1:1. It was shown that thin slab casting conditions provided the best hot ductility results for the low carbon steels. All the niobium steels showed poor ductility in the single-phase austenite temperature region, indicating that intergranular precipitation of fine niobium carbonitrides was the cause of the poor ductility. It was shown that the hot ductility was greatly improved by calcium treatment, by decreasing the cooling rate and by increasing the strain rate. Slow iv thin slab and thick slab casting conditions provided the best hot ductility results for the niobium steels. Hot ductility was substantially improved in the aluminium-killed boron steels by increasing the boron to nitrogen ratio from 0.19 to 0.75. The results showed that, at cooling rates generally associated with thick slab, bloom and slow thin slab casting, a boron to nitrogen ratio of ≥0.47 was sufficient to avoid a ductility trough altogether. However, under conditions typically experienced in fast thin slab and billet casting, a boron to nitrogen ratio of 0.75 was required to provide good hot ductility. The mechanism of the ductility improvement with increasing boron to nitrogen ratio was found to be enhanced precipitation of boron nitride, leading to a decrease in nitrogen available for aluminium nitride precipitation. In the silicon-killed boron steels, it was found that the boron to nitrogen ratio had the overriding influence on hot ductility and hence on crack susceptibility. Excellent hot ductility was found for boron to nitrogen ratios above 1. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly at manganese to sulphur ratios below fourteen. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was determined as a tool to predict scrap levels in the casting plant.
22

Development of systematic measurement on liquid metal

Joakim, Eck January 2019 (has links)
The most common way of producing steel worldwide is with the continuous casting process, where a strand of steel is continuously cast. Further optimization of this process requires data from measurements, measurements which must take place in a hostile high-temperature and corrosive environment such as liquid steel. At Swerim, a Continuous Casting Simulator has been constructed to replicate the flow conditions in the process. A eutectic bismuth-tin alloy with properties similar to steel is used instead to make measurements in liquid metal possible. In this report pressure, velocity and vibration measurements were made using multiple sensors under different flow conditions.
23

Fundamental investigation of refractory reactions occurring at high temperatures in continuous steel casting process

Liu, Fuhai, Material Science & Engineering, UNSW January 2007 (has links)
An in-depth study has been carried out to investigate refractory degradation during continuous steel casting processes. Slag/refractory interactions have been investigated through a study of the wetting behaviour and gas generation phenomena at the slag/refractory interface at 1550oC using sessile drop experiments. The influence of carbon content and slag composition was investigated. Two different steel casting slags (slag1: MnO 50%, SiO2 25%, Al2O3 25%; and slag2: MnO 40%, SiO2 60%) have been studied along with yttria stabilized zirconia refractory substrates respectively containing 10%, 15% and 20% carbon. The gas generation has been measured using the Infrared gas analyser, and its influence has also been investigated by taking optical images at varying times. The total amount of gases emitted has shown the dependence on the compositions of refractory substrates and the existence of casting slags. Under the investigation of zirconia-carbon refractory, a new phenomenon that the gas generated can push the liquid slags away and minimise the contact of slags and refractory substrates has been proven.
24

2D1/2 Thermal-Mechanical Model of Continuous Casting of Steel Using Finite Element Method

Pascon, Frédéric 17 November 2003 (has links)
The thesis deals with a numerical model based on the finite element method applied to the continuous casting process. This model has been developed and implemented in the LAGAMINE finite element code and two industrial applications of steel casting are presented to illustrate the possibilities of the model. The first chapter of the thesis introduces the continuous casting process from the industrial point of view, allowing the definition of the essential terminology and the industrial challenges. Then, the objectives of the model are detailed: the model is applied to the upper part of the caster (in the mould region) as well as the bending and straightening zones. Chapters two, three and four are dedicated to the theoretical developments of thermal aspects (phase transformations, thermal contraction, heat flow and thermal boundary conditions), mechanical aspects (generalized plain strain state, material constitutive law, ferrostatic pressure and mechanical contact) and the staggered analysis for thermal / mechanical coupling. In the two next chapters, some numerical results are shown. The model has been first applied to a 125mm square billet in the mould region. The industrial goal was to evaluate the effect of the mould taper on the cooling of the billet (temperature evolution, solid shell growing, stress and strain development). The second application focuses on the risk of transverse cracking during straightening of steel slabs and the effect of some local defects (reduction in secondary cooling, rolls locking or misalignment). The thesis ends with some conclusions and perspectives for the model.
25

Modeling of magnetohydrodynamic turbulence

Widlund, Ola January 2000 (has links)
Conventional one-point turbulence closures have beenextended with an additional transported scalar for modeling ofmagnetohydrodynamic (MHD) turbulence. The new scalar, α ,captures the length scale anisotropy and tendency towardstwo-dimensionality, which is characteristic feature of MHDturbulence, and allows accurate modeling of the Jouledissipation of turbulence. The concept has been used for both afull Reynolds stress closure, and a three-equationK-ε -αmodel. An exact transport equation forαwas derived from the governing equations. All terms inthe equation require modeling, however. The proposed modeltransport equation for α includes terms for magneticdissipation, nonlinear energy transfer, and effects of meanshear and strain. Modeling of the magnetic and strain-relatedterms was based on rapid distortion analysis of the linearizedequations, while modeling of nonlinear effects isphenomenological in nature. For homogeneous turbulence, themodel was compared with linear theory, direct numericalsimulations and experiments. For turbulence subjected to astrong magnetic field, the model reproduces the energy andlength scale evolution predicted by linear theory. Whennonlinear effects are of importance, it predicts energy decayand length scale evolution in agreement with experiments. Theeddy viscosity and Reynolds stress versions of the modelcoincide with the respective conventional models in the absenceof a magnetic field. The objective of this project has been todevelop efficient MHD turbulence models for engineeringapplications, especially for modeling of continuous steelcasting. The novel MHD turbulence models appear to benumerically robust, and they have been implemented in acommercial flow solver, together with electromagnetic equationsfor the Lorentz forces in the mean momentum equations. <b>Keywords:</b>Turbulence model, magnetohydrodynamics, MHD,magnetohydrodynamic turbulence, computational fluid dynamics,continuous casting, dimensionality, Reynolds stresses, eddyviscosity
26

The Stability Analysis of Mold Level Control System

Yang, Chu-Kang 28 August 2001 (has links)
The theoretical stability analysis of mold level control system for slab continuous casting machine is presented in this thesis. In the procedure of analyzing the stability of the mold level control system, the PLC program written for the control system is studied first in order to obtain the mathematical model of a PID controller. Then the mathematical models of servo-amplifier, servo-valve, electro hydraulic system to the output of mold level are established. A simulative control system using Matlab software is constructed in accordance with these mathematical models so that not only the results of stability analysis can be verified but also the dynamic response of controlled system can be studied. Finally, the effects of some potential disturbance on system¡¦s dynamics, stability, and control accuracy are also analyzed.
27

Modeling of magnetohydrodynamic turbulence

Widlund, Ola January 2000 (has links)
<p>Conventional one-point turbulence closures have beenextended with an additional transported scalar for modeling ofmagnetohydrodynamic (MHD) turbulence. The new scalar, α ,captures the length scale anisotropy and tendency towardstwo-dimensionality, which is characteristic feature of MHDturbulence, and allows accurate modeling of the Jouledissipation of turbulence. The concept has been used for both afull Reynolds stress closure, and a three-equation<i>K-ε -α</i>model. An exact transport equation forαwas derived from the governing equations. All terms inthe equation require modeling, however. The proposed modeltransport equation for α includes terms for magneticdissipation, nonlinear energy transfer, and effects of meanshear and strain. Modeling of the magnetic and strain-relatedterms was based on rapid distortion analysis of the linearizedequations, while modeling of nonlinear effects isphenomenological in nature. For homogeneous turbulence, themodel was compared with linear theory, direct numericalsimulations and experiments. For turbulence subjected to astrong magnetic field, the model reproduces the energy andlength scale evolution predicted by linear theory. Whennonlinear effects are of importance, it predicts energy decayand length scale evolution in agreement with experiments. Theeddy viscosity and Reynolds stress versions of the modelcoincide with the respective conventional models in the absenceof a magnetic field. The objective of this project has been todevelop efficient MHD turbulence models for engineeringapplications, especially for modeling of continuous steelcasting. The novel MHD turbulence models appear to benumerically robust, and they have been implemented in acommercial flow solver, together with electromagnetic equationsfor the Lorentz forces in the mean momentum equations.</p><p><b>Keywords:</b>Turbulence model, magnetohydrodynamics, MHD,magnetohydrodynamic turbulence, computational fluid dynamics,continuous casting, dimensionality, Reynolds stresses, eddyviscosity</p>
28

Fundamental investigation of refractory reactions occurring at high temperatures in continuous steel casting process

Liu, Fuhai, Material Science & Engineering, UNSW January 2007 (has links)
An in-depth study has been carried out to investigate refractory degradation during continuous steel casting processes. Slag/refractory interactions have been investigated through a study of the wetting behaviour and gas generation phenomena at the slag/refractory interface at 1550oC using sessile drop experiments. The influence of carbon content and slag composition was investigated. Two different steel casting slags (slag1: MnO 50%, SiO2 25%, Al2O3 25%; and slag2: MnO 40%, SiO2 60%) have been studied along with yttria stabilized zirconia refractory substrates respectively containing 10%, 15% and 20% carbon. The gas generation has been measured using the Infrared gas analyser, and its influence has also been investigated by taking optical images at varying times. The total amount of gases emitted has shown the dependence on the compositions of refractory substrates and the existence of casting slags. Under the investigation of zirconia-carbon refractory, a new phenomenon that the gas generated can push the liquid slags away and minimise the contact of slags and refractory substrates has been proven.
29

Heat transfer through mould flux with titanium oxide additions

Bothma, Jan Andries. January 2006 (has links)
Thesis (M.Eng.)(Metallurgical)--University of Pretoria, 2006. / Includes summary. Includes bibliographical references. Available on the Internet via the World Wide Web.
30

Análise termodinâmica da formação de Al2O3 durante o lingotamento contínuo através da interação química entre pós fluxantes sem flúor e uma liga de Fe líquido saturada com alumínio e oxigênio

Silva, Daniel dos Reis January 2010 (has links)
Pós fluxantes são escórias sintéticas utilizadas no processamento do aço via lingotamento contínuo com o objetivo de promover maior qualidade superficial ao produto lingotado. Para tanto, os pós fluxantes desempenham as seguintes funções: (i) promoção do isolamento térmico e químico do aço, (ii) absorção das inclusões nãometálicas provenientes do aço, (iii) promoção da lubrificação do molde e (iv) controle da transferência de calor entre o aço e o molde. O bom desempenho de cada função está diretamente relacionado às propriedades físicas e químicas que os pós apresentam, as quais são funções de sua composição química. Durante o processo de lingotamento, os pós fluxantes sofrem alterações em sua composição original proporcionadas por diferentes mecanismos que afetam as propriedades dos pós fluxantes. Um dos principais mecanismos responsáveis pelas alterações da composição das escórias é a interação química que ocorre entre o aço líquido e o pó fluxante fundido. Nesse trabalho foram realizadas simulações via aplicativo termodinâmico FactSage com o intuito de avaliar as interações entre metal líquido e escória. Três sistemas simples para a escória – um ternário (CaO-Al2O3-SiO2), um quaternário (CaO-Al2O3-SiO2-MgO) e um quinário (CaO-Al2O3-SiO2-MgO-Na2O) – e uma liga de Fe saturada em alumínio e oxigênio – 0,1%, 0,01% e 0,001% de Al – foram escolhidos para a realização das simulações, visando avaliar o incremento de Al2O3 da escória através da interação entre o alumínio dissolvido no ferro e a sílica presente na escória. O aumento do teor de alumina na escória foi quantificado para cada um dos três sistemas estudados em função do teor de Al e da razão S/M (kg de pó fluxante/t de metal líquido). Foram realizadas curvas de resfriamento para as escórias – que sofreram alterações em sua composição – para avaliar a influência da variação da composição sobre o comportamento de solidificação destas, baseadas em diagramas pseudobinários. Por fim, foram realizados cálculos de viscosidade para estas escórias através do modelo IRSID, para analisar a influência da composição sobre a viscosidade. Mostrou-se, para as condições escolhidas, que as alterações da composição química das escórias devido às interações entre metal líquido e escória são significativas, afetando as propriedades dos pós fluxantes, tais como seu comportamento de solidificação e sua viscosidade. / Mold powders are synthetic slags used in steel processing via continuous casting in order to promote greater surface quality to casting product. Thus, the mold powders perform the following functions: (i) promotion of the thermal and chemical insulate of steel, (ii) absorption of non-metallic inclusions from the steel, (iii) promotion of the lubrication of the mold and (iv) control of the heat transfer between steel and mold. The good performance of each function is directly related to physical and chemical properties presented by the powders, which are functions of their chemical compositions. During casting process, the mold powders undergo changes in their original composition provided by different mechanisms that affect the properties of mold powders. One of the main mechanisms responsible for changes in the composition of the slag is the chemical interaction that occurs between liquid steel and molten mold powders. In this work, simulations were carried out via thermodynamics software FactSage with the purpose of evaluating the interactions between the liquid metal and slag. Three simple systems – a ternary (CaO-Al2O3-SiO2), a quaternary (CaO-Al2O3- SiO2-MgO) and a quinary (CaO-Al2O3-SiO2-MgO-Na2O) – and a Fe alloy saturated with aluminum and oxygen – 0,1%, 0,01% and 0,001% Al – were chosen to perform the simulations in order to evaluate the increase of Al2O3 in slag through the interaction between the dissolved aluminum in iron and silica present in the slag. The increase of alumina content in the slag was quantified for each of the three systems studied as a function of Al content and the ratio S/M (mold powder kg/t liquid metal). Cooling curves were performed for slags – that suffered changes in their composition – to assess the influence of the composition variation on the behavior of slags, based on the pseudo-binary diagrams. Calculations of viscosity for these slags through the IRSID model to analyze the influence of chemical composition on the viscosity were performed. For the conditions chosen, it was shown that changes in chemical composition of the slag due to interactions between liquid metal and slag are significant, affecting the properties of fluxing powders, such as the solidification behavior and viscosity.

Page generated in 0.0474 seconds