• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 10
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 43
  • 17
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microstructural effects on fatigue damage evolution in advanced high strength sheet (AHSS) steels

Godha, Anshul 08 June 2015 (has links)
An understanding of the damage evolution prior to crack initiation in advanced structural materials is of vital importance to the fatigue community in both academia and industry. Features known as the Persistent Slip Bands (PSBs) play an integral role in this damage evolution. Therefore, PSBs have been the focus of a lot of science-based investigations over the years. However, most existing studies in this area are restricted to analysis of PSBs in single crystal face centered cubic (FCC) materials. Moreover, these studies lack a quantitative analysis of the evolution of the fatigue damage (or PSBs) as a function of the material microstructure. This is especially true for relatively modern materials such as the Advanced High Strength Structural (AHSS) steels that are gaining a lot of importance in the automotive sector. Accordingly, the objective of this research is to quantitatively characterize evolution of PSBs in three AHSS steels having different microstructures as a function of number of fatigue cycles and strain amplitude. For this purpose strain controlled interrupted fatigue tests have been performed on two dual phase steels (DP-590 and DP-980) having different relative amounts of tempered martensite and a ferritic high strength low alloy steel (HR-590). Digital image analysis and Stereology have been used for unbiased quantitative characterization of the evolution of global geometry of the PSB colonies as function of number of fatigue cycles and strain amplitude. Evolution of PSB colonies has been couched in terms of variation of PSB colony volume fraction and total surface area unit volume, and total surface area of individual PSBs per unit volume and three-dimensional angular orientation distribution of the PSBs. For this purpose, new stereological techniques have been developed for estimation of the three-dimensional angular orientation distribution. The stereological data reveal that during strain controlled in these AHSS steels, volume fraction of the PSB colonies varies linearly with the their total surface area per unit volume. Detailed analysis of the stereological data leads to a simple geometric model for evolution of the PSB colonies in the three AHSS steels, which accounts for all observed data trends.
12

Reliability-based management of fatigue failures

Josi, Georg Unknown Date
No description available.
13

THE EFFECT OF MICROSTRUCTURE AND TEXTURE ON HIGH CYCLE FATIGUE PROPERTIES OF AL ALLOYS

Li, Jinxia 01 January 2007 (has links)
High cycle fatigue tests were carried out on a medium strength continuous casting AA 5754 Al alloy, and new generation high strength AA 2026 and AA 2099 Al alloys. The effect of texture on fatigue properties and short crack behavior were studied. The strengthening mechanisms were also thoroughly investigated for the two high strength alloys.Texture played an important role in the anisotropy of fatigue strength for the AA 5754 Al alloy. Being a solution strengthened alloy, it had a fatigue strength of 120% σy. High strength Al alloys had a strong tendency for planar slip due to the high density of coherent and shearable precipitates in the alloys. Texture was a key factor controlling the crack initiation and propagation. The crack path and the possible minimum twist angles were measured using EBSD and calculated theoretically by a crystallographic model. Based on the micro-texture measured by EBSD, the crack paths were predicted for the AA 2099 alloy and confirmed by the observed values.The excellent balance of superior fatigue properties and high tensile strength of AA 2026 and AA 2099 was attributed to the reduced population of Fe-containing particles, homogeneously distributed precipitates and dislocations. The addition of Zr coupled with the optimized thermo-mechanical treatment strongly restrained the recrystallization, refined the grain structure and promoted the homogenization of the precipitates. Moreover, the retainment of the deformation texture developed during the hot extrusion provided significant orientation strengthening in the high strength Al alloys.Fatigue cracks tended to initiate at coarse second phase particles on sample surfaces and the crack population varied markedly with the applied stresses in the high strength Al alloys. The relationship between of the crack population and the applied stress level was studied and quantified by a Weibull distribution function. Since the measured cracknumbers were associated with the crack initiate sites (i.e., the weakest links) in an alloy, the fatigue weakest-link density, which is defined as the crack population per unit area when stress close to the ultimate tensile stress, and the weakest-link strength distribution can all be calculated and regarded as a property of the studied materials.
14

Amorçage de fissures en fatigue dans un acier 304L : influence de la microstructure et d'un chargement d'amplitude variable / Fatigue crack initiation (in 304L steel) : influence of the microstructure and variable amplitude loading

Li, Yan 10 February 2012 (has links)
L‘amorçage et la propagation de microfissures dans les matériaux à haute résistance représente une part importante de la durée de vie en fatigue, en particulier dans le cas d‘un chargement à faible amplitude. Ces phénomènes, d‘un grand intérêt scientifique, ont été de plus en plus étudiés au cours des dernières années. L‘orientation cristallographique et les hétérogénéités de déformation induites influent sur l‘amorçage et le comportement des microfissures de fatigue tant que leur taille caractéristique est inférieure ou de l‘ordre de grandeur de la taille de grains. L‘objectif principal de cette étude est de caractériser l‘influence de la microstructure et d‘un chargement cyclique à amplitude variable sur la plasticité cristalline et plus précisément sur l‘amorçage de microfissures dans un acier inoxydable 304L. Le première partie de cette étude consiste à l‘amélioration de la loi de comportement cristalline Cristal ECP codée dans le logiciel éléments finis ABAQUS afin de mieux prendre en compte la distribution et l‘évolution de la densité de dislocations sur les systèmes de glissement. Ce travail permet également de décrire la formation des bandes persistantes de glissement qui sont responsables du durcissement et de l‘adoucissement cyclique. La seconde partie de cette étude concerne l‘évaluation de l‘influence de la microstructure sur les valeurs locales des paramètres mécaniques utilisés pour les critères de fatigue aussi bien macroscopiques que microscopiques, et relier ces valeurs à l‘amorçage de microfissures à l‘échelle cristalline. Pour ceci, une comparaison est réalisée entre les résultats expérimentaux d‘observation de surfaces et les simulations numériques d‘agrégats 3D présentant les orientations cristallines réelles de ces éprouvettes. La simulation de la plasticité cristalline peut apporter une contribution utile pour la prédiction de la localisation et de l‘intensité de l‘amorçage de microfissures de fatigue, mais également aider à choisir un critère d‘amorçage de microfissures basé sur des considérations mécaniques. La dernière partie de ce manuscrit porte sur les effets d‘un chargement d‘amplitude variable (séquence de surcharge) sur la plasticité cristalline et l‘amorçage de microfissures. Deux modes de chargement ont été considérés pour les essais de fatigue : contrainte contrôlée et déformation contrôlée. Les essais avec surcharge en contrainte contrôlée présentent une durée de vie plus importante (six à neuf fois) que les essais avec surcharge en déformation contrôlée, ce qui est lié au durcissement cyclique important du 304L. De plus, les simulations montrent que sous chargement à déformation contrôlée, l‘effet mémoire de la surcharge est dépendant du niveau du chargement qui suit la surcharge : cet effet mémoire est plus important dans le cas d‘un chargement à faible amplitude (fatigue à grand nombre de cycles) qu‘en fatigue oligocyclique à forte amplitude / Because fatigue crack initiation and propagation of microstructurally short cracks represent most of the fatigue life in high-strength materials, especially under low amplitude loading, the study of crack initiation is of significant importance and attracted increasing attention recently. As long as the microcrack size is comparable with the grain size, the microcrack initiation is strongly influenced by the crystallographic microstructure. The main purpose of this work is to study the influence of the microstructure and variable amplitude loading on cyclic plasticity and microcrack initiation in stainless steel 304L. The first part of this work aims at enriching the crystal plasticity code Cristal ECP to better simulate the evolution of dislocation densities on slip systems and formation of PSBs which are responsible for the fatigue cyclic hardening/softening behavior. The second part concerns the evaluation of the influence of local values of mechanical factors, issued from both macroscopic and microscopic fatigue criteria, on crack initiation in the grains through the comparison between experimental surface observations and numerical simulations of 3D aggregates with realistic crystallographic orientations. It is shown that the crystal plasticity simulation can give useful contributions to predict the crack initiation sites and severity, and help to select fatigue crack initiation criterion based on mechanical parameters which actually control the crack initiation. The last part studies the effects of the variable amplitude loading (high-low sequence) on cyclic plasticity and crack initiation. Both load- and strain-controlled fatigue tests were considered. Load-controlled tests present much longer lives (6 to 9 times) than in strain-controlled tests due to strain hardening. Furthermore, simulations show that under strain-controlled loading, memory effect of overload is dependent on the amplitude level of the low amplitude block, which is more significant in high cycle fatigue than in low cycle fatigue.
15

Anisotropie de propriétés mécaniques d'origine morphologique et cristallographique de l'alliage de titane β-métastable Ti-5Al-5Mo-5V-3Cr : influence sur la durabilité en fatigue / Mechanical Properties Anisotropy of the Beta-Metastable Ti-5Al-5Mo-5V-3Cr Alloy Related to Morphologic and Crystallographic Aspects : Influence on the Fatigue Durability

Helstroffer, Aurélien 13 February 2018 (has links)
Les alliages de titane β-métastable sont largement utilisés dans l’industrie aéronautique pour leurs propriétés mécaniques élevées, leur faible densité et bonne résistance à la corrosion. Dans ces alliages, et contrairement aux alliages α ou α/β, environ 40 % de phase β sont retenus à température ambiante. Cette phase, à la structure cubique centrée, est connue pour présenter une anisotropie élastique élevée, qui influence significativement les mécanismes de déformation opérant à l’échelle de la microstructure. Les travaux de thèse détaillés dans ce manuscrit visent à mieux comprendre le lien entre la durabilité de l’alliage Ti-5Al-5Mo-5V-3Cr sous sollicitations cycliques, un enjeu important pour les équipements aéronautiques, et l’anisotropie élastique de la phase β.Ce point central a tout d’abord fait l’objet d’une étude dédiée, dans le but de permettre une description satisfaisante de l’élasticité cristalline de la phase β. Pour cela, et à l’aide de différentes microstructures modèles, la contribution de la phase α a pu être isolée. La caractérisation de la texture cristallographique associée à la mesure du module d'Young par méthode de résonance dynamique a permis de passer en revue les différents jeux de constantes d’élasticité de la phase β proposés dans la littérature et de conclure par le choix le plus adapté. Enfin, une prise en compte de la contribution liée à la précipitation α a permis de modéliser les propriétés du matériau dans l’état microstructural utilisé industriellement.Les mécanismes de déformation plastique et d’endommagement actifs sous sollicitations monotones et cycliques ont ensuite été caractérisés en lien avec l’orientation cristallographique locale des deux phases. Cette étape a permis d’étudier l’influence de l’anisotropie élastique de la phase β sur le comportement mécanique ainsi que d’identifier les configurations microstructurales favorisant l'endommagement de cet alliage. Les conséquences sur la durabilité de l’alliage Ti-5Al-5Mo-5V-3Cr sont finalement discutées. / Β-metastable titanium alloys are widely used in the aerospace industry due to the combination of superior mechanical properties with a low density and a good corrosion resistance. In contrast with α or α/β alloys, 40 % of β phase are retained at room temperature in these alloys. This phase, with a body-centered cubic structure, is known to exhibit a high elastic anisotropy. A significant influence is expected on the deformation processes operating at the microstructure scale. The PhD work detailed in the present manuscript focuses on the relationship between durability of Ti-5Al-5Mo-5V-3Cr under cyclic loadings, which is a critical concern for aerospace components, and the elastic anisotropy of the β phase. Elastic anisotropy was first studied in order to enable a proper description of crystalline elasticity in the the β phase. Different academic microstructures were designed to isolate the contribution of the α phase. A characterization of the crystallographic texture using the EBSD technique combined with estimation of Young’s modulus using the dynamic resonance method enabled to review and criticize the elastic constants datasets available in the literature for the β phase. Finally, the contribution of the α precipitation was re-introduced in order to model the properties of the alloy with an industrially used microstructure.The plastic deformation and damage processes operating under monotonic and cyclic loadings were then characterized by considering the local crystallographic orientation of both phases. This enabled to study the influence of elastic anisotropy on the mechanical behavior at multiple scales as well as to identify the microstructural arrangements favoring damage. The consequences on durability of the Ti-5Al-5Mo-5V-3Cr alloy under fatigue loading are finally discussed.
16

Contact Fatigue of Spur Gear Operating Under Starved Lubrication Condition

Udthala, Aparna 04 May 2021 (has links)
No description available.
17

MECHANISTIC STUDY OF CRACK INITIATION AND PROPAGATION IN CROSSLINKED ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENES (UHMWPE) SUBJECTED TO STATIC AND CYCLIC LOADING

Sirimamilla, Pavana Abhiram 12 March 2013 (has links)
No description available.
18

Crack Initiation Analysis in Residual Stress Zones with Finite Element Methods

Brew, Patrick Joseph 10 August 2018 (has links)
This research explores the nearly untapped research area of the analysis of fracture mechanics in residual stress zones. This type of research has become more prevalent in the field in recent years due to the increase in prominence of residual stress producing processes. Such processes include additive manufacturing of metals and installation procedures that lead to loads outside the anticipated standard operating load envelope. Abaqus was used to generate models that iteratively advanced toward solving this problem using the compact tensile specimen geometry. The first model developed in this study is a two-dimensional fracture model which then led to the development of an improved three-dimensional fracture model. Both models used linear elastic fracture mechanics to determine the stress intensity factor (K) value. These two models were verified using closed-form equations from linear elastic fracture mechanics. The results of these two models validate the modeling techniques used for future model iterations. The final objective of this research is to develop an elastic-plastic fracture mechanics model. The first step in the development of an elastic-plastic fracture model is a three-dimensional quasi-static model that creates the global macroscale displacement field for the entire specimen geometry. The global model was then used to create a fracture submodel. The submodel utilized the displacement field to reduce the model volume, which allowed a higher mesh density to be applied to the part. The higher mesh density allowed more elements to be allocated to accurately represent the model behavior in the area local to the singularity. The techniques used to create this model were validated either by the linear elastic models or by supplementary dog bone prototype models. The prototype models were run to test model results, such as plastic stress-strain behavior, that were unable to be tested by just the linear elastic models. The elastic-plastic fracture mechanics global quasi-static model was verified using the plastic zone estimate and the fracture submodel resulted in a J-integral value. The two-dimensional linear elastic model was validated within 6% and the three-dimensional linear elastic model was validated within 0.57% of the closed-form solution for linear elastic fracture mechanics. These results validated the modeling techniques. The elastic-plastic fracture mechanics quasi-static global model formed a residual stress zone using a Load-Unload-Reload load sequence. The quasi-static global model had a plastic zone with only a 0.02-inch variation from the analytical estimate of the plastic zone diameter. The quasi-static global model was also verified to exceed the limits of linear elastic fracture mechanics due to the size of the plastic zone in relation to the size of the compact specimen geometry. The difference between the three-dimensional linear elastic fracture model J-integral and the elastic-plastic fracture submodel initial loading J-integral was 3.75%. The J-integral for the reload step was 18% larger than the J-integral for the initial loading step in the elastic-plastic fracture submodel. / Master of Science / Additive manufacturing, sometimes referred to as 3-D printing, has become an area of rapid innovation. Additive manufacturing methods have many benefits such as the ability to produce complex geometries with a single process and a reduction in the amount of waste material. However, a problem with these processes is that very few methods have been created to analyze the initial part stresses caused by the processes used to additive manufacture. Finite element methods are computer-based analyses that can determine the behavior of parts based off prescribed properties, shape, and loading conditions. This research utilizes a standard fracture determination shape to leverage finite element methods. The models determine when a crack will form in a part that has process stresses from additive manufacturing. The model for crack initiation was first developed in two dimensions, neglecting the thickness of the part, using a basic material property definition. The same basic material property definition was next used to develop a crack initiation model in three dimensions. Then a more advanced material property definition was used to capture the impact of additive manufacturing on material properties. This material property definition was first used to establish the part properties as it relates to part weakening due to additive manufacturing. A higher accuracy model of just the crack development area was produced to determine the crack initiation properties of the additive manufactured part. Methods previously confirmed by testing were used to validate the models produced in this research. The models demonstrated that under the same loading parts with initial processes stresses were closer to fracture than parts without initial stresses.
19

Gigacycle Fatigue of the titanium alloy / La Fatigue Gigacyclique d’un alliage de titane

Nikitin, Alexander 22 January 2015 (has links)
Ce projet de doctorat est aux prises avec un problème de ruptures en fatigue de un alliage de titane aéronautique en raison de haute fréquence chargement. Matériel pour cette enquête a été prise de compresseur du moteur disque de l'avion réel. Essais de fatigue à ultrasons ont été réalisées jusqu'à dépasser la limite de 1010 cycles. Cette région de la durée de vie est connu comme Gigacycle ou fatigue très grand nombre de cycles. Ce projet de thèse montre pour la première fois les résultats des tests de fatigue sur l'lliage de titane aéronautique VT3-1 dans la région Gigacycle. Les propriétés de fatigue de l'alliage de titane ont été déterminées à 109 cycles pour les conditions de chargement différentes: traction-compression, tension-tension et de torsion. Mécanismes d'initiation des fissures typiques ont été identifiés et des défauts critiques de microstructure ont été trouvés. L'effet de l'anisotropie en raison de processus de fabrication sur les propriétés de fatigue de l'alliage de titane VT3-1 forgé a été étudiée. Une influence du processus de fabrication sur les propriétés de fatigue a également été étudiée par comparaison les résultats sur extrudé et forgé VT3-1 alliage de titane. La nouvelle machine de torsion à ultrasons a été conçu et installé pour la longue durée de vie (jusqu'à 1010 cycles) de tests de fatigue en rotation. Les premiers résultats sous la chargement en torsion ultrasons ont été obtenues pour l'alliage de titane réalisé par extrusion et technologies forgés. / This PhD project is dealing with a problem of fatigue failures of aeronautical titanium alloy due to high frequency loading. The material for investigation was taken from the real aircraft engine compressor disk. Ultrasonic fatigue tests were carried out up to outrun limit of 1010 cycles. This region of lifetime is known as Gigacycle or very high cycle fatigue. This PhD project shows for the first time the results of fatigue tests on the VT3-1 aeronautical titanium alloy in the Gigacycle region. The fatigue properties of the titanium alloy were determined at 109 cycles for different loading conditions: tension-compression, tension-tension and torsion loading. Typical crack initiation mechanisms were identified and critical defects of microstructure were found. The effect of anisotropy due to fabrication process on the fatigue properties of the forged VT3-1 titanium alloy was studied. An influence of technological process on fatigue properties was also studied by comparison the results on extruded and forged VT3-1 titanium alloy.The new ultrasonic torsion machine was designed and installed for the long life (up to 1010 cycles) fatigue tests under rotation. The first results under ultrasonic torsion loading were obtained for the titanium alloy made by extrusion and forged technologies.
20

A THREE-DIMENSIONAL QUANTITATIVE UNDERSTANDING OF SHORT FATIGUE CRACK GROWTH IN HIGH STRENGTH ALUMINUM ALLOYS

Wen, Wei 01 January 2013 (has links)
The behaviors of short fatigue crack (SFC) propagation through grain boundaries (GBs) were monitored during high cycle fatigue in an Al-Li alloy AA8090. The growth behaviors of SFCs were found to be mainly controlled by the twist components (α) of crack plane deflection across each of up to first 20 GBs along the crack path. The crack plane twist at the GB can result in a resistance against SFC growth; therefore SFC propagation preferred to follow a path with minimum α at each GB. In addition to the grain orientation, the tilting of GB could also affect α. An experiment focusing on quantifying GB-resistance was conducted on an Al-Cu alloy AA2024-T351. With a focused ion beam (FIB) and electron backscatter diffraction (EBSD), the micro-notches were made in front of the selected GBs which had a wide range of α, followed by monitoring the interaction of crack propagation from the notches with the GBs during fatigue. The crack growth rate was observed to decrease at each GB it had passed; and such growth-rate decrease was proportional to α. The resistance of the GB was determined to vary as a Weibull-type function of α. Based on these discoveries, a microstructure-based 3-D model was developed to quantify the SFC growth in high-strength Al alloys, allowing the prediction of crack front advancement in 3-D and the quantification of growth rate along the crack front. The simulation results yielded a good agreement with the experimental results about the SFC growth rate on the surface of the AA8090 Al alloy. The model was also used to predict the life of SFC growth statistically in different textures, showing potential application to texture design of alloys. Fatigue crack initiation at constituent particles (β-phase) was preliminarily studied in the AA2024-T351 Al alloy. Cross-sectioning with the FIB revealed that the 3-D geometry, especially the thickness, of fractured constituent particles (β-phase) was the key factor controlling the driving force for micro-crack growth. The resistance to micro-crack growth, mainly associated with crack plane twist at the particle/matrix interface, also influenced the growth behaviors of the micro-cracks at the particles on the surface.

Page generated in 0.107 seconds