• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 7
  • 3
  • 1
  • Tagged with
  • 35
  • 35
  • 14
  • 13
  • 13
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fault location with travelling waves

Bustamante Mparsakis, Xavier 08 February 2018 (has links) (PDF)
Travelling wave fault locators (TWFL) have the possibility to get rid of the limitation of typical locators based on the 50Hz impedance. Their principles were invented in the early 1900's, but only recently became economically viable. Some TWFL devices are now commercialized.Despite the recent commercialization of TW fault locators, actual field experience of TWFL is hard to acquire and rarely presented in the literature. Due to this, most studies are based on simplified simulation models.Practical experience in the form of TW records are important. It is the basis to understand the practical difficulties of applying TWFL algorithms. It is also necessary to illustrate the simulations limitations, and to test algorithms on real records.The work performed in this thesis was supported by Siemens with the hope to develop TWFL devices based on the results. The aim of the work was first to acquire experience in the practical side of TWs and their recording in substations. Based on this practical experience, the second objective was to study a TWFL that includes a new method for wave detection: the pattern recognition algorithm (PRA). The practical experience was acquired with a measurement campaign performed in the Belgian transmission network, and with laboratory tests that reproduce the measurements of currents inside a substation.Fault records suitable to TW studies were acquired during the measurement campaign, and are analysed in this report. The fault records and the laboratory tests highlighted and characterized the impact of the substation measurements on the waves recorded. Modelling those measurement systems is shown to improve the accuracy of the simulation tools.This report also presents a theoretical development of the PRA. The algorithm is adapted to take into account the practical difficulties previously analysed. An applicable version of the algorithm is proposed and tested. The algorithm proposal provides a precision better than 300m when applied to the simulation models. This precision varies with the set of parameters used, with the line topology, and with the fault location. On the field record acquired, the algorithm provides the fault location with a precision of 110m.A prototype has been developed by Siemens, and some devices have been installed at the end of this thesis. The TW records that will be acquired by those prototypes will provide a significant help in continuing the work presented in this report. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
2

Přístrojový transformátor proudu 12kV, 4000//5/5A / Current transformers 12kV, 4000 / / 5/5A

Šumberák, David January 2014 (has links)
This master´s thesis describes the development proposal and production of instrument current transformer in one turn primary winding with 4000//5/5 A transfer. The thesis involves a theoretical analysis, a numerical calculation, a developmental 3D model, corresponding simulations and a standard testing of the transformers. There is a complete written description of measuring current transformer cycle from the development to the production. The transformer development and production works were collaborated with the company KPB Intra s.r.o. The company engages in development, production and sale of these kinds of instrument transformers in the Czech Republic and foreign markets.
3

Průvlekový transformátor proudu 25 kV, 400/5/5 A / Bushing-type current transformer 25 kV, 400/5/5 A

Bálint, Zoltán January 2009 (has links)
The aim of this master’s thesis is the design of a double-core bushing-type current transformer. This appliance is intended for measuring and protection of high-voltage distribution systems of the internal type for the highest system voltage of 25 kV. The master’s thesis is divided into four parts. The first part describes the function of the current transformer. The next part deals with the analysis of the phasor diagram and errors of the current transformer. The major part of the thesis deals with the design of the protective and measuring core. The last part describes the 3D model of the bushing-type current transformer.
4

Vinkelfelet i mätkretsens påverkan på riktade jordfelsskydd / The angular error in the measuring circuits impact on the directional earth-fault protection

Bring, Hampus, Emanuelsson, Olle January 2015 (has links)
Utfört examensarbete undersöker vinkelfelet i mätkretsen för riktade jordfelsskydd och hur det påverkar dess felbortkoppling. Uppkomna vinkelfel i mätkretsen kan påverka det riktade jordfelsskyddet så att verklig felström och uppmätt felström inte stämmer överens, vilket kan leda till uteblivna eller obefogade felbortkopplingar. Vattenfall ställer krav på att vinkelfelet får uppgå till max ±2 grader för mätkretsen. Eftersom vinkelfelet i många fall har en hög påverkan på jordfelsskyddets noggrannhet undersöks vad Vattenfalls vinkelkrav egentligen innebär. Största orsaken till vinkelfelet uppstår oftast i strömtransformatorn och därför undersöks hur mycket två strömtransformatorer med olika klassificeringar som är vanliga i elnätet påverkar vinkelfelet i mätkretsen. Jordfel är det vanligast uppkomna felet i mellanspänningsnät och dess storlek beror till stor del på hur mycket kapacitivt bidrag som finns på linjerna samt värdet på nollpunktsresistorn. Det kapacitiva bidraget från linjen kompenseras centralt i fördelningsstationen och ibland lokalt ute på ledningen. Den högst tillåtna centralt kompenserade delen av en linje får vara 30 A, vid reservdrift av en linje kan denna del uppgå till 60 A. Vinkelfelet har en högre påverkan vid stora kapacitiva bidrag och vid låga värden på nollpunktsresistorn. I många fall sitter det flera riktade jordfelsskydd på samma linje där selektivitet alltid eftersträvas. Vinkelfelet kan ha en negativ påverkan på denna selektivitet. Genom beräkningar, simuleringar och provningar har ett antal slutsatser dragits. Vattenfalls vinkelkrav ger en otydlig bild angående tillåten påverkan på jordfelsskyddet. Med rätt val av strömtransformator påvisas att det troligtvis är möjligt att skärpa vinkelkravet. För att minska vinkelfelets påverkan kan den högst tillåtna centralt kompenserade delen minskas och/eller öka värdet på nollpunktsresistorn. En beloppsselektivitet på 1000 Ω kan inte alltid tillämpas då vissa fall kräver en beloppsselektivitet på 2000 Ω. Genom att sätta nollpunktsspänningen som utlösningsvillkor och nollpunktsströmmen som frigivningsvillkor kan enligt studien troligen ett noggrannare jordfelsskydd uppnås. / This bachelor's thesis examines the angular error in the measurement circuit for directional earth-fault protection and how this error affects the fault disconnection. Angular errors in the measurement circuit can affect the directional earth-fault protection in such a way that the real fault current and the measured fault current do not match. This can lead to missed or unwarranted fault disconnections. Vattenfall has a requirement which states that the angular error must not exceed ±2 degrees for the measurement circuit. Since the angular error in many cases has a high impact on the earth-fault accuracy, an investigation concerning what Vattenfalls angle requirement really means. The main cause of the angular error usually occurs in the current transformers and therefore two commonly used current transformers in the grid with different classifications and their impact on the angular error in the measurement circuit are examined. Ground fault is the most common fault which occurs in a distribution network, its size depends largely on the amount of capacitive current which the grid contributes with as well as the size of the neutral grounding resistor. The capacitive contribution of the grid compensates centrally in the distribution station and sometimes locally on the line. The maximum permitted centrally compensated part of a line is limited to 30 A, this central part can go up to 60 A in case the line needs to be fed from a second distribution station. The angular error has a higher impact if the capacitive contribution is high and for low values of the neutral grounding resistor. In many cases more than one earth-fault protection are found on the same line, in these cases selectivity is always pursued. The angular error may have a negative effect on the selectivity. By calculations, simulations and tests a number of conclusions can be drawn. Vattenfalls angle requirement gives an unclear picture concerning the permitted impact on the earthfault protection. Moreover selecting the correct current transformer demonstrates that the angular requirement can probably be sharpened. To reduce the influence of the angular error the maximum permitted centrally compensated part be reduced and/or the value of the neutral grounding resistor can be increased. A selectivity of 1000 Ω can not always be applied since certain cases require a selectivity of 2000 Ω. By setting the zero sequence voltage as the trigger condition and the zero sequence current as the realese condition, according to this study it may be possible to achieve a more accurate earth-fault protection.
5

Electric Field Calculations on Dry-Type Medium Voltage Current Transformers

January 2012 (has links)
abstract: This research presents potential and electric field calculations on medium voltage (MV) epoxy insulated outdoor current transformers (CTs) using a numeri-cal calculation approach. Two designs of MV dry-type epoxy insulated CTs were modeled using 3D field simulation software COULOMB® 9.0. Potential and elec-tric fields were calculated based on boundary element method. Different condi-tions such as dry exterior surface, wet exterior surface and internal voids were considered. The research demonstrates that the presence of internal conductors in CTs results in a less severe surface electric field distribution when compared to outdoor insulators of the same voltage range and type. The high electric field near the exited end triple-point of the CT reduces. This remained true even under wet conditions establishing better outdoor performance of CTs than outdoor insulators which have no internal conductors. The effect of internal conductors on voids within the insulation structure was also established. As a down side, internal voids in CTs experience higher electric field stress than in conductor-less insulators. The work recognizes that internal conducting parts in dry type CTs improves their outdoor performance when compared to electrical equipment without internal conductors. / Dissertation/Thesis / M.S. Electrical Engineering 2012
6

Transformador de corrente com núcleo toroidal para recuperação de energia eletromagnética.

SILVA, Thaís Luana Vidal de Negreiros da. 24 April 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-04-24T17:01:07Z No. of bitstreams: 1 THAÍS LUANA VIDAL DE NEGREIROS DA SILVA – DISSERTAÇÃO (PPGEE) 2016.pdf: 1884666 bytes, checksum: afeda21236f3e2ea365c427c256b6865 (MD5) / Made available in DSpace on 2018-04-24T17:01:07Z (GMT). No. of bitstreams: 1 THAÍS LUANA VIDAL DE NEGREIROS DA SILVA – DISSERTAÇÃO (PPGEE) 2016.pdf: 1884666 bytes, checksum: afeda21236f3e2ea365c427c256b6865 (MD5) Previous issue date: 2016-10-17 / Capes / Neste trabalho são apresentados estudos analíticos e simulações computacionais sobre transformadores de corrente (TC) com núcleo toroidal de material magneticamente mole como recuperadores de energia eletromagnética. A fundamentação teórica parte das leis fundamentais do eletromagnetismo derivadas das equações de Maxwell. Na obtenção dos circuitos magnéticos equivalentes foram levados em conta as forças magnetomotrizes, relutâncias e os fluxos magnéticos. Como estudo de caso, foi utilizada uma simulação computacional baseada no método dos elementos finitos para a obtenção da distribuição de indução magnética dentro do núcleo toroidal. Tal como previsto pelas expressões analíticas, verificou-se que a indução magnética distribui-se de maneira não uniforme na direção radial do núcleo. Partindo dos circuitos magnéticos, circuitos elétricos equivalentes foram deduzidos, nos quais foram representadas as resistências e as reatâncias. Simulou-se o comportamento do TC como recuperador de energia e verificou-se que o rendimento do sistema de recuperação depende do material do núcleo, da carga acoplada ao secundário do TC, do coeficiente de acoplamento entre primário e secundário e da existência ou não de entreferro no núcleo magnético. / In this work an analytic and computational analysis of current transformers (CT) with soft magnetic material toroidal core used as energy harvester is presented. The theoretical approach is based on the fundamental laws of electromagnetism presented in Maxwell's equations. Magnetomotive forces, reluctance and magnetic flux were taken into account in order to obtain equivalent magnetic circuits. Using a 2D simulation tool based on finite element method, computational simulations were performed in order obtain the distribution of magnetic induction in radial direction of the toroidal core. As predicted by the analytical expressions, the magnetic induction is distributed nonuniformly in the radial direction of the core. Based on the magnetic circuits, equivalent electrical circuits were deducted, in which the resistance and reactance were represented. Based on computational simulations, it was possible to conclude that the efficiency of the TC as energy harvester varies according to the core material, to the load at its secondary terminal, to the coupling coefficient between primary and secondary and to the existence of air gap in the magnetic core.
7

Design of current transformer energy harvesting power supply

Bäckman, Oscar January 2021 (has links)
This thesis explores the possible method to harvest energy from ambient sources around power transformers. These include magnetic induction and vibration. The objective is to create an energy harvester device that can output enough energy to power multiple sensors, wireless connectivity and an MCU. Energy harvesting is prone to have low power output. To continuously run sensors and other electronics can be tough to achieve.  Instead of powering the electronics continuously the option of storing the harvested energy from the environment into an intermediate energy buffer, a supercapacitor was explored. Using vibration energy generated from the power transformer showed that the vibration magnitude was too low to power the device. Two options of using magnetic induction have been investigated. The first option using a  coil that can be placed on the side of the power transformer. Secondly, a design using a current transformer clamped around one of the power transformers high-current transmission line.  The coil-design would use the stray magnetic field which the transformer transmits. To know the magnitude of the magnetic flux, measurements were done using a microcontroller with a magnetic sensor. The result showed that 7µTrms was present around the transformer. To use this very low magnetic flux to power an MCU a large coil with thousands of windings would be needed but due to the high impedance and low power output,  it was deemed not practical to use this as a power extraction method.  The second option explored is to use a current transformer which normally uses the magnetic field around a transmission line to measure the current level in the transmission line. Instead, the current transformer was explored to be used as a power supply. To test the viability of using a current transformer as a power supply a test-station that simulates a transmission line up to 200A was constructed.   Using a current transformer showed that it would be possible to extract enough energy. Though the current transformer’s power rating would easily be exceeded and possibly breaking the device. Regardless, electronics and a PCB was designed to use the power output of the current transformer to power an MCU and its sensors continuously. The design has several flaws as the CT power rating is exceeded and possibly unsafe to install on a substation in its current form.
8

Current-Transformer Based Gate-Drive Power Supply With Reinforced Isolation

Hu, Jiewen 05 1900 (has links)
In recent years, there is a clear trend toward increasing the demand for electric power in high-power applications. High-power converters are making major impacts on these high-power applications. Recent breakthroughs in Silicon Carbide (SiC) materials and fabrication techniques have led to the development of high-voltage, high-frequency power devices, which are at the heart of high-power converters. SiC metal-oxide semiconductor field-effect transistors (MOSFETs) have advantages over silicon (Si) devices due to their higher breakdown voltage, higher thermal capability, and lower on-state resistance. However, their fast switching frequency and high blocking voltage bring challenges to the gate-drive circuit design. The gate driver of SiC-MOSFETs requires a power supply that provides a high-voltage, high-density design, a low input-output capacitance (CI/O) transformer design, good voltage regulation, as well as good resilience to faults to enable safe and fast operation. In this thesis, a power supply that supplies multiple gate drivers for 10 kV SiC MOSFETs is presented. A transformer design approach with a single turn at the primary side is proposed. A 20 kV insulation is achieved by the primary HV cable insulation across a toroid transformer core. The CI/O is designed less than 2 pF to mitigate the Common-Mode (CM) noise. A circuit topology analysis is performed and the inductor/capacitor/capacitor/inductor (LCCL) – inductor/capacitor (LC) circuit is selected. This circuit allows Zero-Voltage Switching (ZVS) at full operation range. A Resonant-Current-Bus (RCB) is built at the transformer primary side to achieve load-independence. / Master of Science / Wide-bandgap semiconductor devices have attracted widespread attention due to their superior performance compared to their silicon devices counterpart. To utilize its full benefits, this thesis presents a complete design and optimization of a gate-drive power supply that supplies multiple gate drivers for high-voltage, high-speed semiconductor devices. Four objectives, including high density at high voltage, good noise mitigation, fair voltage regulation, resilience to faults have been achieved. During the design procedure, different topology candidates are introduced and compared, after which a resonant topology is selected. The wide-bandgap semiconductor devices are utilized to reduce the size and losses. Hardware assembly is shown and experimental testing results are provided in the end to verify the design.
9

Synchronized Phasor Measurement Units Applications in Three-phase Power System

Wu, Zhongyu 12 June 2013 (has links)
Phasor Measurement Units (PMUs) are widely acknowledged as one of the most significant developments in the field of real-time monitoring of power system. By aligning time stamps of voltage and current phasor measurements, which are consistent with Coordinated Universal Time (UTC), a coherent picture of the power system state can be achieved through either direct measurements or simple linear calculations. With the growing number of PMUs installed or planned to be installed in the near future, both utilities and research institutions are looking for novel applications of synchrophasor measurements from these widely installed PMUs. In this dissertation, the author proposes two new PMUs measurements applications: three-phase instrument transformer calibration, and three-phase line parameter calculation with instrument transformers. First application is to calibrate instrument transformers. Instrument transformers are the main sensors used in power systems. They provide isolation between high voltage level of primary side and metering level of the secondary side. All the monitoring and measuring systems obtain input signals from the secondary side of instrument transformers. That means when instrument transformers are not accurate, all the measurements used in power system are inaccurate. The most important job of this dissertation is to explore a method to automatically calibrate all the instrument transformers in the power system based on real-time synchrophasor measurements. The regular instrument transformer calibration method requires the instrument transformer to be out of service (offline) and calibrated by technicians manually. However, the error of instrument transformer changes when environment changes, and connected burden. Therefore, utilities are supposed to periodically calibrate instrument transformers at least once a year. The high labor and economic costs make traditional instrument transformer calibration method become one of the urgent problems in power industry. In this dissertation we introduce a novel, low cost and easy method to calibrate three-phase instrument transformers. This method only requires one three-phase voltage transformer at one bus calibrated in advance. All other instrument transformers can be calibrated by this method as often as twice a day, based on the synchrophasor measurements under different load scenarios. Second application is to calculate line parameters during calibrating instrument transformers. The line parameters, line impedance and line shunt admittance, as needed by utilities are generated by the computer method. The computer method is based on parameters, such as the diameter, length, material characteristics, the distance among transmission line, the distance to ground and so on. The formulas to calculate line parameters have been improved and re-modeled from time to time in order to increase the accuracy. However, in this case, the line parameters are still inaccurate due to various reasons. The line parameters errors do affect the instrument transformers calibration results (with 5% to 10% error). To solve this problem, we present a new method to calculate line parameters and instrument transformers in the same processing step. This method to calibrate line parameter and instrument transformers at the same time only needs one pre-calibrated voltage transformer and one pre-calibrated current transformer in power system. With the pre-calibrated instrument transformers, the line parameter as well as the ratio correction factors of all the other instrument transformers can be solved automatically. Simulation results showed the errors between calculated line parameters and the real line parameter, the errors between calibrated ratio correction factors and the real ratio correction factors are of the order of 10e-10 per unit. Therefore, high accuracy line parameters as well as perfectly calibrated instrument transformers can be obtained by this new method. This method can run automatically every day. High accuracy and dynamic line parameters will significantly improve power system models. It will also increase the reliability and speed of the relay system, enhance the accuracy of power system analysis, and benefit all other researches using line parameters. New methods of calculating line parameter and the instrument transformer calibrations will influence the whole power industry significantly. / Ph. D.
10

Prilog savremenom etaloniranju strujnih mernih transformatora / The Recent Contribution to Calibration of Current Transformers Language of

Naumović Vuković Dragana 29 August 2018 (has links)
<p>U ovoj doktorskoj disertaciji prikazana je koncepcija, realizacija i potvrda nove metode<br />jednovremenog etaloniranja strujnih mernih transformatora sa dve različite merne<br />aparature. Pregledom stručne literature ne postoji podatak da je ova metoda ranije<br />primenjivana. U disertaciji su prikazane različite merne metode za ispitivanje i<br />etaloniranje mernih transformatora koje imaju primenu u savremenoj praksi i koje<br />podrazumevaju i različite merne mogućnosti. Takođe je i ekperimentalno potvrđeno<br />jednovremeno ispitivanje i etaloniranje strujnih mernih transformatora sa nekoliko<br />mernih aparatura koje su zasnovane na različitim metodama. Sprovedna istraživanja i<br />eksperimentalni rezultati pokazuju i potvrđuju niz prednosti ovakvog načina<br />etaloniranja. Detaljna analiza komponenti merne nesigurnosti pokazala je da se<br />primenom ove metode postiže poboljšanje merne nesigurnost etaloniranja za skoro red<br />veličine u odnosu na klasično pojedinačno etaloniranje sa dve različite merne<br />aparature. Analiza uticajnih veličina na mernu nesigurnost pokazuje da se po ovoj novoj<br />metodi etaloniranja eliminiše niz komponenti od kojih su najznačajnije: uticaj<br />nejednakosti referentnih struja i ispitnog opterećenja. Istraživanja su takođe pokazala<br />da jednovremena metoda osim što doprinosi podizanju tačnosti etaloniranja strujnih<br />transformatora, ima primenu i u etaloniranju mernih aparatura za ispitivanje tačnosti<br />mernih transformatora i interkonparaciji strujnih etalon transformatora. Kroz<br />konkretne primere realizovane u praksi, razmotreni su i prikazani načini etaloniranja<br />mernih aparatura za ispitivanje tačnosti ovom novom metodom. Interkomparacijom dva<br />merna sistema visoke klase tačnosti Nacionalnog merološkog instituta Kanade<br />(National Research Council Canada), od kojih je jedna razvijena u Elektrotehničkom<br />Institutu &quot;Nikola Tesla&quot;, pokazana je i prednost primene jednovremene metode u oblasti<br />primarne metrologije strujnih mernih transformatora.</p> / <p>The dissertation presents the concept, its realisation and verification of the new method<br />of simultaneous comparison of the current transformers by two different measuring<br />apparatus. It is shown by searching the literature, that this method has not been used<br />before. In this dissertation different measuring methods for testing and calibration of<br />current transformers, with their different measuring capabilities are presented. Most of<br />them have been used in recent practice. Furthermore, the experimental verification of<br />new simultaneous calibration method is presented. For this reason some measuring<br />apparatus based on different measuring methods were used. Conducted research and<br />experimental results confirmed a number of advantages of this calibration method.<br />Detailed analysis of the components of the uncertainty of measurements shown that<br />using simultaneous method uncertainty of measurements have been improved<br />comparing to method with two individual calibration by different apparatus. In that case<br />some of the measuring uncertainty components can be neglected. The most significant<br />is component caused by variation of referent current and component caused by variation<br />of burden. The research has also showed that simultaneous method can be used for<br />calibration of measuring apparatus for current transformer accuracy testing and their<br />inter-comparisons. The ways of calibration of apparatus for current transformer accuracy<br />testing are considered and presented, through concrete examples realized in practice.<br />A high-accuracy comparison of two NRC (National Research Council Canada)<br />calibration systems were carried out by new simultaneous method. One measuring<br />system is developed at Electrical Engineering institute Nicola Tesla, Belgrade.<br />Accordingly the advantage of simultaneous method applied at the primary metrology of<br />current transformer is verified.</p>

Page generated in 0.0742 seconds