• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Open-Source Testbed to Evaluate the Cybersecurity of Phasor Measurement Units

Zimmermann, Markus Kenneth 22 June 2022 (has links)
The Phasor Measurement Unit provides clear data for ease of grid visibility. A major component of the device is the Global Positioning System (GPS) for time synchronization across the board. However, this device has become more susceptible to cyber-attacks such as spoofing. This paper constructs an opensource testbed for the playback of PMU data and testing of cyberattacks on PMUs. Using a local GPS device to simulate what is done in the PMU, MATLAB for data conversion, and Linux operating system running on Ubuntu, the simulator can be constructed. The spoofing attack is done by adding a phase shift of the incoming data to simulate that the data is coming from a different time stamp and shifts between the original. Finally, it is all brought together by viewing the output in an open source Phasor Data Concentrator (PDC) to validate the process. / Master of Science / To monitor the bulk electrical grid, devices used to calculate at what level the grid is at and what point in time as well. These devices that are called Phasor Measurement Units and send this data to the control center for engineers to process and make decisions. Within each device is a Global Positioning System (GPS) to tell which device is sending data and at what time. The GPS device is what is susceptible to be entered by malicious individuals. To better prepare and prevent this, a testbed would be a good solution to test if the preventative measure works. However, the best of the best costs too much money, so the next best solution is an open source test bed that could be implemented anyway. The work in this paper constructs an opensource testbed and simulates a full GPS spoofing attack.
2

Real Time Test Bed Development For Power System Operation, Control And Cybersecurity

Reddi, Ram Mohan 10 December 2010 (has links)
The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.
3

Synchronized Phasor Measurement Units Applications in Three-phase Power System

Wu, Zhongyu 12 June 2013 (has links)
Phasor Measurement Units (PMUs) are widely acknowledged as one of the most significant developments in the field of real-time monitoring of power system. By aligning time stamps of voltage and current phasor measurements, which are consistent with Coordinated Universal Time (UTC), a coherent picture of the power system state can be achieved through either direct measurements or simple linear calculations. With the growing number of PMUs installed or planned to be installed in the near future, both utilities and research institutions are looking for novel applications of synchrophasor measurements from these widely installed PMUs. In this dissertation, the author proposes two new PMUs measurements applications: three-phase instrument transformer calibration, and three-phase line parameter calculation with instrument transformers. First application is to calibrate instrument transformers. Instrument transformers are the main sensors used in power systems. They provide isolation between high voltage level of primary side and metering level of the secondary side. All the monitoring and measuring systems obtain input signals from the secondary side of instrument transformers. That means when instrument transformers are not accurate, all the measurements used in power system are inaccurate. The most important job of this dissertation is to explore a method to automatically calibrate all the instrument transformers in the power system based on real-time synchrophasor measurements. The regular instrument transformer calibration method requires the instrument transformer to be out of service (offline) and calibrated by technicians manually. However, the error of instrument transformer changes when environment changes, and connected burden. Therefore, utilities are supposed to periodically calibrate instrument transformers at least once a year. The high labor and economic costs make traditional instrument transformer calibration method become one of the urgent problems in power industry. In this dissertation we introduce a novel, low cost and easy method to calibrate three-phase instrument transformers. This method only requires one three-phase voltage transformer at one bus calibrated in advance. All other instrument transformers can be calibrated by this method as often as twice a day, based on the synchrophasor measurements under different load scenarios. Second application is to calculate line parameters during calibrating instrument transformers. The line parameters, line impedance and line shunt admittance, as needed by utilities are generated by the computer method. The computer method is based on parameters, such as the diameter, length, material characteristics, the distance among transmission line, the distance to ground and so on. The formulas to calculate line parameters have been improved and re-modeled from time to time in order to increase the accuracy. However, in this case, the line parameters are still inaccurate due to various reasons. The line parameters errors do affect the instrument transformers calibration results (with 5% to 10% error). To solve this problem, we present a new method to calculate line parameters and instrument transformers in the same processing step. This method to calibrate line parameter and instrument transformers at the same time only needs one pre-calibrated voltage transformer and one pre-calibrated current transformer in power system. With the pre-calibrated instrument transformers, the line parameter as well as the ratio correction factors of all the other instrument transformers can be solved automatically. Simulation results showed the errors between calculated line parameters and the real line parameter, the errors between calibrated ratio correction factors and the real ratio correction factors are of the order of 10e-10 per unit. Therefore, high accuracy line parameters as well as perfectly calibrated instrument transformers can be obtained by this new method. This method can run automatically every day. High accuracy and dynamic line parameters will significantly improve power system models. It will also increase the reliability and speed of the relay system, enhance the accuracy of power system analysis, and benefit all other researches using line parameters. New methods of calculating line parameter and the instrument transformer calibrations will influence the whole power industry significantly. / Ph. D.
4

Trustworthy SDN Control Plane for Prioritized Path Recovery

Barcellesi, Jacopo January 2022 (has links)
Software Defined Networking (SDN) has gained popularity and attractiveness in the past years’ thanks to its dynamic and programmable nature. The possibility to decouple the data plane and control plane allows for the implementation of Internet networks in an innovative way. Thanks to its ease in changing flow rules in network switches, SDN allows network resources optimization. In the case of critical applications, an essential aspect is to ensure connectivity on the network even in case of link failures. Even when a failure causes an interruption of connectivity, the challenge also stays in recovering as fast as possible. Nonetheless, the SDN controller should have the policy to decide which pairs of end-hosts to disable connectivity when there is a shortage of resources to keep the most important connections active. In this thesis, we developed a proactive-reactive SDN controller coded in Python that copes with restoring end-hosts connectivity as fast as possible. The controller prioritizes the couples of end-hosts that need connectivity based on their importance. During a shortage of network resources, the connectivity of pairs of end-hosts with low importance is disabled, and the connectivity between the most important couples can be ensured. We tested our solution with a reactive-only SDN controller and a proactive-reactive SDN controller that does not consider any prioritization order between end-hosts connectivity. Both the benchmark SDN controllers were developed in the thesis. Experiments were run on the same network topology, with the same couple of endhosts involved. The comparison between the proactive-reactive and reactive-only controllers showed the first one to be faster in restoring the connectivity after a failure. It saves time restoring the connectivity and has fewer packets lost under certain conditions in the relationship between the switch-to-switch and the switchto-controller transmission delay. The comparison between the proactive-reactive iii controller and the controller with no prioritization confirms that without an ordered queue of priorities, it may be the most important couple of end-hosts to lose connectivity in case of shortages of network resources. To simulate a realistic scenario, the project considers the case study of electric power transmission networks using SDN. In particular, the focus is on reconnecting Phasor Measurement Unit (PMU)s to the power grid to ensure system observability. During our experiments, we adopted the typical measurement transmission frequency used by PMUs (50Hz). The SDN switches are deployed with P4, and the SDN controller is coded in Python. Furthermore, it exploits P4Runtime to communicate with the switches in run-time. / Software Defined Networking (SDN) har vunnit popularitet och attraktionskraft under de senaste åren tack vare sin dynamiska och programmerbara natur. Möjligheten att frikoppla dataplanet från kontrollplanet gör det möjligt att genomföra Internetnät på ett innovativt sätt. Tack vare att det är lätt att ändra flödesreglerna i nätverksväxlar gör SDN det möjligt att optimera nätverksresurserna. När det gäller kritiska tillämpningar är en viktig aspekt att säkerställa konnektiviteten i nätet även vid länkfel. Även när ett fel orsakar ett avbrott i konnektiviteten är utmaningen också att återhämta sig så snabbt som möjligt. Trots detta bör SDNstyrenheten ha en policy för att avgöra vilka par av slutvärdar som ska inaktivera anslutningen när det råder brist på resurser för att hålla de viktigaste anslutningarna aktiva. I den här avhandlingen har vi utvecklat en proaktiv-reaktiv SDN-styrenhet kodad i Python som klarar av att återställa slutvärdarnas anslutning så snabbt som möjligt. Styrenheten prioriterar paren av slutvärdar som behöver anslutning utifrån deras betydelse. Vid brist på nätverksresurser inaktiveras anslutningen för par av slutvärdar med låg betydelse, och anslutningen mellan de viktigaste paren kan säkerställas. Vi testade vår lösning med en enbart reaktiv SDN-styrenhet och en proaktiv-reaktiv SDN-styrenhet som inte tar hänsyn till någon prioriteringsordning mellan slutvärdarnas konnektivitet. Båda riktmärkeskontrollerna SDN utvecklades i avhandlingen. Experimenten genomfördes på samma nätverkstopologi med samma antal slutvärdar. Jämförelsen mellan den proaktivt-reaktiva och den enbart reaktiva kontrollören visade att den förstnämnda kontrollören var snabbare när det gäller att återställa anslutningen efter ett fel. Den sparar tid för att återställa anslutningen och har färre förlorade paket under vissa förhållanden i förhållandet mellan överföringsfördröjningen från switch till switch och från switch till styrenhet. Jämförelsen mellan den proaktiva-reaktiva styrenheten och v styrenheten utan prioritering bekräftar att utan en ordnad kö av prioriteringar kan det vara det viktigaste paret av slutvärdar som förlorar konnektiviteten vid brist på nätverksresurser. För att simulera ett realistiskt scenario används SDN i projektet som fallstudie för elöverföringsnät. Fokus ligger särskilt på att återansluta Phasor Measurement Unit (PMU)s till elnätet för att säkerställa systemets observerbarhet. Under våra experiment antog vi den typiska överföringsfrekvensen för mätningar som används av PMUs (50Hz). SDN-växlarna installeras med P4, och SDN-styrenheten är kodad i Python. Dessutom utnyttjas P4Runtime för att kommunicera med växlarna i körtid.
5

Power Systems Frequency Dynamic Monitoring System Design and Applications

Zhong, Zhian 25 August 2005 (has links)
Recent large-scale blackouts revealed that power systems around the world are far from the stability and reliability requirement as they suppose to be. The post-event analysis clarifies that one major reason of the interconnection blackout is lack of wide area information. Frequency dynamics is one of the most important parameters of an electrical power system. In order to understand power system dynamics effectively, accurately measured wide-area frequency is needed. The idea of building an Internet based real-time GPS synchronized wide area Frequency Monitoring Network (FNET) was proposed to provide the imperative dynamic information for the large-scale power grids and the implementation of FNET has made the synchronized observations of the entire US power network possible for the first time. The FNET system consists of Frequency Disturbance Recorders (FDR), which work as the sensor devices to measure the real-time frequency at 110V single-phase power outlets, and an Information Management System (IMS) to work as a central server to process the frequency data. The device comparison between FDR and commercial PMU (Phasor Measurement Unit) demonstrate the advantage of FNET. The web visualization tools make the frequency data available for the authorized users to browse through Internet. The research work addresses some preliminary observations and analyses with the field-measured frequency information from FNET. The original algorithms based on the frequency response characteristic are designed to process event detection, localization and unbalanced power estimation during frequency disturbances. The analysis of historical cases illustrate that these algorithms can be employed in real-time level to provide early alarm of abnormal frequency change to the system operator. The further application is to develop an adaptive under frequency load shedding scheme with the processed information feed in to prevent further frequency decline in power systems after disturbances causing dangerous imbalance between the load and generation. / Ph. D.
6

Centralized Control of Power System Stabilizers

Sanchez Ayala, Gerardo 09 October 2014 (has links)
This study takes advantage of wide area measurements to propose a centralized nonlinear controller that acts on power system stabilizers, to cooperatively increase the damping of problematic small signal oscillations all over the system. The structure based on decision trees results in a simple, efficient, and dependable methodology that imposes much less computational burden than other nonlinear design approaches, making it a promising candidate for actual implementation by utilities and system operators. Details are given to utilize existing stabilizers while causing minimum changes to the equipment, and warranting improvement or at least no detriment of current system behavior. This enables power system stabilizers to overcome their inherent limitation to act only on the basis of local measurements to damp a single target frequency. This study demonstrates the implications of this new input on mathematical models, and the control functionality that is made available by its incorporation to conventional stabilizers. In preparation of the case of study, a heuristic dynamic reduction methodology is introduced that preserves a physical equivalent model, and that can be interpreted by any commercial software package. The steps of this method are general, versatile, and of easy adaptation to any particular power system model, with the aggregated value of producing a physical model as final result, that makes the approach appealing for industry. The accuracy of the resulting reduced network has been demonstrated with the model of the Central American System. / Ph. D.
7

Voltage Stability Analysis of Unbalanced Power Systems

Santosh Kumar, A January 2016 (has links) (PDF)
The modern day power system is witnessing a tremendous change. There has been a rapid rise in the distributed generation, along with this the deregulation has resulted in a more complex system. The power demand is on a rise, the generation and trans-mission infrastructure hasn't yet adapted to this growing demand. The economic and operational constraints have forced the system to be operated close to its design limits, making the system vulnerable to disturbances and possible grid failure. This makes the study of voltage stability of the system important more than ever. Generally, voltage stability studies are carried on a single phase equivalent system assuming that the system is perfectly balanced. However, the three phase power system is not always in balanced state. There are a number of untransposed lines, single phase and double phase lines. This thesis deals with three phase voltage stability analysis, in particular the voltage stability index known as L-Index. The equivalent single phase analysis for voltage stability fails to work in case of any unbalance in the system or in presence of asymmetrical contingency. Moreover, as the system operators are giving importance to synchrophasor measurements, PMUs are being installed throughout the system. Hence, the three phase voltages can be obtained, making three phase analysis easier. To study the effect of unbalanced system on voltage stability a three phase L-Index based on traditional L-Index has been proposed. The proposed index takes into consideration the unbalance resulting due to untransposed transmission lines and unbalanced loads in the system. This index can handle any unbalance in the system and is much more realistic. To obtain bus voltages during unbalanced operation of the system a three phase decoupled Newton Raphson load ow was used. Reactive power distribution in a system can be altered using generators voltage set-ting, transformers OLTC settings and SVC settings. All these settings are usually in balanced mode i.e. all the phases have the same setting. Based on this reactive power optimization using LP technique on an equivalent single phase system is proposed. This method takes into account generator voltage settings, OLTC settings of transformers and SVC settings. The optimal settings so obtained are applied to corresponding three phase system. The effectiveness of the optimal settings during unbalanced scenario is studied. This method ensures better voltage pro les and decrease in power loss. Case studies of the proposed methods are carried on 12 bus and 24 bus EHV systems of southern Indian grid and a modified IEEE 30 bus system. Both balanced and unbalanced systems are studied and the results are compared.

Page generated in 0.1142 seconds