• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of formation and dissociation of cyclopentane hydrates / Mécanismes de formation et dissociation d’hydrates de cyclopentane

Martinez de Baños, Maria Lourdes 13 November 2015 (has links)
Les mécanismes de formation et dissociation d’hydrates de cyclopentane (CP), qui forment á pression ambiante et á des températures entre 0ºC et 7ºC, ont été observés dans/sur/proche des gouttes d’eau immergées dans du CP á des échelles qui vont du micron jusqu’au millimètre. Plusieurs techniques d’observation ont été utilisées, telles que la macrophotographie et la microscopie optique en champ clair, par contraste interférentiel différentiel (CID), par fluorescence et par réflectance confocale. Des substrats hydrophiles et hydrophobes ont été utilisés. Dans une première série d’expériences, un procédé millifluidique simple a été mis au point. Il permet de générer, stocker et surveiller simultanément une centaine de gouttelettes de même volume (de l’ordre de μl), régulièrement espacées. Elles sont séparées par la phase ‘invité’ (CP) dans un tuyau en polymère fluoré (PFA) transparent. Chacune d’elles se comporte comme un réacteur indépendant. Une vision sur l’effet mémoire est obtenue en menant des mesures statistiques sur la nucléation des hydrates quand les gouttes d’eau sont refroidies au-dessous de 7°C. Cette méthode permet aussi de visualiser des événements dans des gouttes individuelles, tels que la naissance et la croissance de l’hydrate (surtout lorsqu’un additive tel qu’un inhibiteur est rajouté dans l’eau), ainsi que la formation d’une émulsion de CP dans l’eau pendant la dissociation de l’hydrate. Dans une deuxième série d’expériences, une seule goutte d’eau est posée ou pendue d’un substrat en verre et immergée dans du CP. Elle est observée par microscopie sous des séquences différentes de refroidissement – échauffement. Il a été observé que la cristallisation d’hydrates dépend fortement du sous-refroidissement. Deux nouveaux phénomènes ont été observés:(i) la propagation d’un « halo » d’hydrate le long de l’interface verre/CP depuis la ligne de contact de la goutte d’eau.(ii) cristallisation de l’hydrate dans une émulsion 2D de CP dans l’eau.Les deux types d’outils développés dans cette thèse ouvrent des nouvelles perspectives pour élucider les mécanismes de formation et dissociation d’hydrates en présence d’additives (promoteurs et inhibiteurs) et en présence d’un substrat minéral. Les applications comprennent les hydrates dans des environnements sédimentaires, séparation de gaz, etc. / The mechanisms of formation and dissociation of cyclopentane (CP) hydrates, which form at ambient pressure and temperatures between 0°C and 7°C, have been observed in/on/near water drops immersed in CP at scales ranging from a few nanometers to the millimeter by a variety of techniques including macrophotography and optical microscopy under various modes: bright field, differential interference contrast (DIC), fluorescence and confocal reflectance. The substrates used are either hydrophobic or hydrophilic. In a first series of experiments, a simple millifluidic method is implemented. It allows to generate, store and monitor at the same time almost a hundred of regularly-spaced water droplets of equal volume (in the µl range) separated by the guest (CP) phase in a transparent fluorinated polymeric (PFA) (hydrophobic) tubing, each droplet behaving as an independent reactor for hydrate crystallization. Insights into the ‘memory effect’ are gained by measuring the statistics of hydrate nucleation events in these reactors when chilling below 7°C the water drops. The method also allows the visualization of single-drop events such as hydrate birth and growth, and the formation of a CP-in-water emulsion upon hydrate melting, especially when an additive such as an inhibitor is added to the water. In a second series of experiments, a single water droplet in CP, either sitting or hanging from a glass substrate, is observed by microscopy under various cooling and heating sequences. Hydrate crystallization (nucleation and growth) is observed to strongly depend on subcooling at the water drop/CP interface. Two novel phenomena are visualized in detail:(i) the propagation, from the contact line of the water drop, of a hydrate halo along the glass/CP interface. (ii) hydrate crystallization in a two-dimensional CP-in-water emulsion.The two types of tools developed in this thesis open new perspectives for elucidating the mechanisms of hydrate formation and dissociation in presence of additives (promoters and inhibitors) and in the presence of a mineral substrate. Applications include hydrates in sedimentary environments, flow assurance, gas separation, etc.
2

Effets de tensioactifs ioniques sur les interfaces et l’agglomération d’hydrates de gaz.. / Effects of ionic surfactants on the interfaces and the gas hydrates agglomeration.

Delroisse, Henry 15 December 2017 (has links)
Lors de la production d’hydrocarbures, les conditions de pression et température dans les conduites peuvent être favorables à la formation d’hydrates de gaz (composés cristallins formés par l’association de molécules d’eau et de gaz). Leur formation peut entraîner le bouchage des conduites et mener à l’arrêt de la production, entraînant d’importantes pertes économiques. Pour remédier au risque « hydrate », les pétroliers disposent de diverses méthodes dont l’utilisation d’additifs antiagglomérants. Les antiagglomérants sont des tensioactifs capables de s’adsorber à la surface des cristaux d’hydrate et de les maintenir dispersés dans la phase hydrocarbonée, qui est généralement majoritaire. L’objectif de cette thèse est de progresser dans la compréhension des mécanismes d’action de tensioactifs ioniques pour la prévention de l’agglomération d’hydrates de gaz. Plusieurs tensioactifs cationiques ont été étudiés sur un hydrate de cyclopentane (CP) (qui se forme à pression atmosphérique) et sur un hydrate de méthane/propane (qui se forme sous pression).Pour les deux hydrates, l’effet des tensioactifs sur la morphologie des cristaux et sur leur mouillabilité a été étudié, et leur performance antiagglomérante (AA) a été évaluée en réacteur agité pour différentes conditions et compositions des systèmes. Les tensioactifs conduisant à la formation de cristaux individuels présentent les meilleures performances AA. Les observations montrent qu’il n’est pas indispensable que les tensioactifs rendent les cristaux mouillables à l’huile pour qu’ils procurent une bonne protection contre l’agglomération dans un système agité où l’huile est la phase majoritaire. Nous avons vu que la modification (par ajout de sel par exemple) de l’environnement physicochimique des molécules tensioactives peut jouer un rôle déterminant sur leurs propriétés AA. De même, la modification de la structure des molécules (nature du contre-ion, longueur des chaînes hydrocarbonées) impacte leur adsorption sur l’hydrate, la morphologie et la mouillabilité des cristaux, et par suite leur performance AA. Les principaux facteurs identifiés pour la bonne performance d’une molécule tensioactive sont sa capacité à se fixer efficacement et en quantité suffisante à la surface de l’hydrate, et à rendre les cristaux d’hydrate hydrophobes, ou dans le cas où il les rend hydrophiles d’abaisser fortement la tension interfaciale entre les phases aqueuse et huileuse de manière à réduire l’intensité des forces capillaires entre les particules. Enfin, nous avons pu établir une corrélation entre les observations faites à l’échelle microscopique et la performance AA des tensioactifs évaluée à l’échelle macroscopique. Ce travail confirme que l’hydrate de CP est globalement un bon modèle pour des évaluations simples de la performance de molécules tensioactives. L’utilisation de l’hydrate de CP présente néanmoins des limitations pour mener des études à forts sous-refroidissements et avec de grandes fractions volumiques d’eau. / Pressure and temperature conditions encountered in the pipelines of hydrocarbons production may be favorable to the formation of gas hydrates (crystalline compounds formed by the association of molecules of gas and water). Their agglomeration in pipelines may form plugs and lead to production shutdowns and cause significant economic losses. To prevent it, oil and gas companies use various methods and more particularly anti-agglomerant additives. Anti-agglomerants are surfactants that can adsorb at the hydrate crystals surface and keep them dispersed in a hydrocarbon phase. The objective of this thesis is to progress in the understanding of mechanisms of action of ionic surfactant to prevent the gas hydrates agglomeration. Several cationic surfactants were studied on a cyclopentane (CP) hydrate (formed at atmospheric pressure) and on a methane/propane hydrate (formed under pressure). For both hydrates, the effect of surfactants on the crystals morphology and on their wettability was investigated, and their anti-agglomerant (AA) performance was evaluated in an agitated reactor for systems at different conditions and compositions. The surfactants leading to the formation of individual crystals had the best AA performances. In order to have a good protection against the agglomeration, it is not necessary that the surfactants make the crystals oil wettable in a system where the oil phase is in excess. We showed that the modification (by the addition of salt for example) of the physicochemical environment of surfactant molecules plays an important role on their AA properties. Similarly, the modification of the structure of molecules (counter-ion nature, length of the hydrocarbon chains) affects their adsorption on the hydrate, the morphology and wettability of crystals and consequently their AA performance. The main factors identified for a good performance of a surfactant molecule are its capacity to be efficiently fixed and in a sufficient amount on the hydrate surface in order to make the hydrate crystals hydrophobic. In the case where it makes the hydrate hydrophilic, the surfactant has to strongly reduce the interfacial tension between the aqueous and oil phases and then reduce the intensity of capillary forces between hydrate particles. Lastly, we set a correlation between the observations done at the microscopic scale and the AA performance of surfactants evaluated at the macroscopic scale. This work confirms that the CP-hydrate is overall a good model for a simple evaluation of the surfactant molecules performance. However, the use of the CP-hydrate has some limitations to conduct studies at high subcooling and watercut.
3

[pt] PERSPECTIVAS SOBRE COMPORTAMENTO MECÂNICO E EFICIÊNCIA DE INIBIDORES NOS HIDRATOS DE CICLOPENTANO / [en] PERSPECTIVES ON MECHANICAL BEHAVIOR AND INHIBITOR EFFICIENCY IN CYCLOPENTANE HYDRATES

MARINA RIBEIRO BANDEIRA 13 August 2024 (has links)
[pt] No âmbito da indústria de petróleo e gás, a interrupção das linhas de produção e transporte devido à acumulação de compostos orgânicos e inorgânicos representa um desafio generalizado e significativo, resultando em consideráveis perdas financeiras e apreensões ambientais. Os hidratos de gás, particularmente enfatizados entre vários desafios relacionados à deposição inorgânica, apresentam uma questão complexa caracterizada pela formação de sólidos cristalinos à base de água, semelhantes ao gelo, ocorrendo sob condições de pressão elevada e baixas temperaturas que se formam quando moléculas leves de hidrocarbonetos e água se combinam para formar uma estrutura ordenada específica. A formação de hidrato começa na interface água-hidrocarboneto, o que destaca o papel crítico que a reologia interfacial desempenha neste processo. Apesar da importância desta interface na formação de hidratos, persiste uma lacuna na pesquisa, particularmente no emprego de abordagens de reologia de cisalhamento. Este estudo ajuda a preencher essa lacuna investigando as propriedades mecânicas e de fluxo da interface, utilizando um recurso em um reômetro rotacional, uma célula de anel de parede dupla, para controle preciso da temperatura. O ciclopentano serve como formador de hidrato, permitindo a experimentação sob condições atmosféricas. pressão e temperaturas variadas. Os protocolos exploram a temperatura e as concentrações de hidrocarbonetos, com ênfase no envolvimento dos cristais de gelo no início da formação de hidratos. Após a saturação completa da interface hidrocarboneto/água por hidratos, os módulos elásticos e viscosos interfaciais são obtidos através de varreduras de deformação para avaliar a fragilidade do filme de hidrato e resposta mecânica. Além disso, é examinado o impacto do tempo de envelhecimento e do tipo de cisalhamento (estático ou dinâmico) na rigidez do hidrato. Testes com inibidores termodinâmicos, como cloreto de sódio e monoetilenoglicol, demonstram extensão significativa do tempo de indução. Além disso, mudanças sistemáticas na taxa de cisalhamento são investigadas para compreender de forma abrangente sua influência nas características e propriedades do filme hidratado sob diversas condições de histórico de cisalhamento. No geral, esta pesquisa lança luz sobre as nuances da dinâmica da interface águahidrocarboneto na formação e mitigação de hidratos. / [en] Within the realm of the oil and gas industry, the disruption of production and transportation lines due to the accumulation of organic and inorganic compounds poses a widespread and significant challenge, resulting in considerable financial losses and environmental concerns. Gas hydrates, particularly emphasized among various challenges related to inorganic deposition, present a complex issue characterized by the formation of crystalline water-based solids, akin to ice, occurring under conditions of high pressure and low temperatures that arise when light hydrocarbon molecules and water combine to form a specific ordered structure. Hydrate formation begins at the water-hydrocarbon interface, highlighting the critical role interfacial rheology plays in this process. Despite the importance of this interface in hydrate formation, a research gap persists, particularly in the employment of shear rheology approaches. This study aids in bridging this gap by investigating the mechanical and flow properties of the interface, utilizing a resource in a rotational rheometer, a double-wall ring cell, for precise temperature control. Cyclopentane serves as the hydrate former, allowing experimentation under atmospheric pressure and varied temperatures. Protocols explore temperature and hydrocarbon concentrations, with an emphasis on the involvement of ice crystals in the early stages of hydrate formation. Following complete saturation of the hydrocarbon/water interface by hydrates, interfacial elastic and viscous moduli are obtained through strain sweeps to assess hydrate film fragility and mechanical response. Additionally, the impact of aging time and shear type (static or dynamic) on hydrate stiffness is examined. Tests with thermodynamic inhibitors, such as sodium chloride and monoethylene glycol, demonstrate a significant extension of the induction time. Furthermore, systematic changes in shear rate are investigated to comprehensively understand their influence on the characteristics and properties of the hydrated film under various shear history conditions. Overall, this research sheds light on the nuances of waterhydrocarbon interface dynamics in hydrate formation and mitigation.

Page generated in 0.0313 seconds