• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Water structure and dynamics through functionalized surfaces

Köhler, Mateus Henrique January 2018 (has links)
Neste trabalho propomos uma investigação através de simulações de dinâmica molecular da água em contato com superfícies hidrofóbicas e hidrofílicas, tanto dentro de nanotubos funcionalizados quanto em membranas bi-dimensionais para dessalinização. No caso da água em contato com superfícies hidrofóbicas e hidrofílicas de nanotubos nós encontramos uma quebra na relação de Stokes-Einstein para a difusão e a viscosidade da água. Essa quebra ocorre para os menores nanotubos − em que pelo menos duas camadas de água formam-se, condição para deslizamento de camadas necessária para o cálculo da viscosidade. O mecanismo por trás deste comportamento é ditado pela estrutura da água confinada. Esse resultado indica que algumas das características observadas para a água dentro de nanotubos hidrofóbicos, como nanotubos de carbono na natureza, são únicas. Encontramos uma grande dependência da dinâmica e estrutura da água confinada com as características polares do nanotubo, principalmente para nanotubos com diâmetros menores que 1 nm. Ao variarmos a temperatura do sistema, observamos ainda uma forte dependência da estruturação das moléculas de água com a temperatura, a ponto de apresentar transições entre estados mais e menos ocupados Nossos resultados de dinâmica molecular também mostram que membranas contendo nanoporos com sítios hidrofílicos entre regiões hidrofóbicas podem apresentar grande fluxo de água e reduzido transporte de íons, o que torna esses materiais excelentes candidatos para sistemas de dessalinização e limpeza de metais pesados. Ao acrescentarmos um químico floculante (cloreto de ferro) à água salgada, encontramos resultados ainda melhores para a rejeição de sal pelas membranas nanoporosas. Todos esses resultados demonstram a importância do estudo das propriedades hidrofóbicas e hidrofílicas em interfaces aquosas. Em todos os casos, encontramos uma dependência inerente das propriedades de transporte da água com a característica polar da superfície de contato. / In this work we have proposed an investigation through molecular dynamics (MD) simulations of the water behavior at hydrophobic and hydrophilic surfaces in both functionalyzed nanotubes and two-dimensional nanpores. In the case of water at hydrophobic and hydrophilic nanotube surfaces, we have found a breakdown of the Stokes-Einstein relation for diffusion and viscosity of water confined in narrow hydrophobic nanopores. The mechanism underlying this behavior is dictated by the structure of water under confinement. This result indicates that some of the features observed for water inside hydrophobic carbon nanotubes cannot be observed in other nanopores. We have also found an important dependence of the water dynamics with the polar character of the nanotube, mostly for small diameters. By varying the temperature, both the dynamics and the water structuration are affected, presenting transitions between dense-packed and low-density states. Our results also shows that nanoporous membranes, with hydrophilic sites sandwiched between hydrophobic regions, can present an important flux of water molecules and reduced ion transportation, making these structures promising for desalination processes. By adding a flocculant ingredient (ferric chloride) to the salt water, we found even larger ion rejection rates. All the results point out the importance of studying hydrophilic and hydrophobic interfaces for water transport. In all the cases, we have found an ubiquitous dependence of water dynamic properties on the surface polarity.
2

Water structure and dynamics through functionalized surfaces

Köhler, Mateus Henrique January 2018 (has links)
Neste trabalho propomos uma investigação através de simulações de dinâmica molecular da água em contato com superfícies hidrofóbicas e hidrofílicas, tanto dentro de nanotubos funcionalizados quanto em membranas bi-dimensionais para dessalinização. No caso da água em contato com superfícies hidrofóbicas e hidrofílicas de nanotubos nós encontramos uma quebra na relação de Stokes-Einstein para a difusão e a viscosidade da água. Essa quebra ocorre para os menores nanotubos − em que pelo menos duas camadas de água formam-se, condição para deslizamento de camadas necessária para o cálculo da viscosidade. O mecanismo por trás deste comportamento é ditado pela estrutura da água confinada. Esse resultado indica que algumas das características observadas para a água dentro de nanotubos hidrofóbicos, como nanotubos de carbono na natureza, são únicas. Encontramos uma grande dependência da dinâmica e estrutura da água confinada com as características polares do nanotubo, principalmente para nanotubos com diâmetros menores que 1 nm. Ao variarmos a temperatura do sistema, observamos ainda uma forte dependência da estruturação das moléculas de água com a temperatura, a ponto de apresentar transições entre estados mais e menos ocupados Nossos resultados de dinâmica molecular também mostram que membranas contendo nanoporos com sítios hidrofílicos entre regiões hidrofóbicas podem apresentar grande fluxo de água e reduzido transporte de íons, o que torna esses materiais excelentes candidatos para sistemas de dessalinização e limpeza de metais pesados. Ao acrescentarmos um químico floculante (cloreto de ferro) à água salgada, encontramos resultados ainda melhores para a rejeição de sal pelas membranas nanoporosas. Todos esses resultados demonstram a importância do estudo das propriedades hidrofóbicas e hidrofílicas em interfaces aquosas. Em todos os casos, encontramos uma dependência inerente das propriedades de transporte da água com a característica polar da superfície de contato. / In this work we have proposed an investigation through molecular dynamics (MD) simulations of the water behavior at hydrophobic and hydrophilic surfaces in both functionalyzed nanotubes and two-dimensional nanpores. In the case of water at hydrophobic and hydrophilic nanotube surfaces, we have found a breakdown of the Stokes-Einstein relation for diffusion and viscosity of water confined in narrow hydrophobic nanopores. The mechanism underlying this behavior is dictated by the structure of water under confinement. This result indicates that some of the features observed for water inside hydrophobic carbon nanotubes cannot be observed in other nanopores. We have also found an important dependence of the water dynamics with the polar character of the nanotube, mostly for small diameters. By varying the temperature, both the dynamics and the water structuration are affected, presenting transitions between dense-packed and low-density states. Our results also shows that nanoporous membranes, with hydrophilic sites sandwiched between hydrophobic regions, can present an important flux of water molecules and reduced ion transportation, making these structures promising for desalination processes. By adding a flocculant ingredient (ferric chloride) to the salt water, we found even larger ion rejection rates. All the results point out the importance of studying hydrophilic and hydrophobic interfaces for water transport. In all the cases, we have found an ubiquitous dependence of water dynamic properties on the surface polarity.
3

Water structure and dynamics through functionalized surfaces

Köhler, Mateus Henrique January 2018 (has links)
Neste trabalho propomos uma investigação através de simulações de dinâmica molecular da água em contato com superfícies hidrofóbicas e hidrofílicas, tanto dentro de nanotubos funcionalizados quanto em membranas bi-dimensionais para dessalinização. No caso da água em contato com superfícies hidrofóbicas e hidrofílicas de nanotubos nós encontramos uma quebra na relação de Stokes-Einstein para a difusão e a viscosidade da água. Essa quebra ocorre para os menores nanotubos − em que pelo menos duas camadas de água formam-se, condição para deslizamento de camadas necessária para o cálculo da viscosidade. O mecanismo por trás deste comportamento é ditado pela estrutura da água confinada. Esse resultado indica que algumas das características observadas para a água dentro de nanotubos hidrofóbicos, como nanotubos de carbono na natureza, são únicas. Encontramos uma grande dependência da dinâmica e estrutura da água confinada com as características polares do nanotubo, principalmente para nanotubos com diâmetros menores que 1 nm. Ao variarmos a temperatura do sistema, observamos ainda uma forte dependência da estruturação das moléculas de água com a temperatura, a ponto de apresentar transições entre estados mais e menos ocupados Nossos resultados de dinâmica molecular também mostram que membranas contendo nanoporos com sítios hidrofílicos entre regiões hidrofóbicas podem apresentar grande fluxo de água e reduzido transporte de íons, o que torna esses materiais excelentes candidatos para sistemas de dessalinização e limpeza de metais pesados. Ao acrescentarmos um químico floculante (cloreto de ferro) à água salgada, encontramos resultados ainda melhores para a rejeição de sal pelas membranas nanoporosas. Todos esses resultados demonstram a importância do estudo das propriedades hidrofóbicas e hidrofílicas em interfaces aquosas. Em todos os casos, encontramos uma dependência inerente das propriedades de transporte da água com a característica polar da superfície de contato. / In this work we have proposed an investigation through molecular dynamics (MD) simulations of the water behavior at hydrophobic and hydrophilic surfaces in both functionalyzed nanotubes and two-dimensional nanpores. In the case of water at hydrophobic and hydrophilic nanotube surfaces, we have found a breakdown of the Stokes-Einstein relation for diffusion and viscosity of water confined in narrow hydrophobic nanopores. The mechanism underlying this behavior is dictated by the structure of water under confinement. This result indicates that some of the features observed for water inside hydrophobic carbon nanotubes cannot be observed in other nanopores. We have also found an important dependence of the water dynamics with the polar character of the nanotube, mostly for small diameters. By varying the temperature, both the dynamics and the water structuration are affected, presenting transitions between dense-packed and low-density states. Our results also shows that nanoporous membranes, with hydrophilic sites sandwiched between hydrophobic regions, can present an important flux of water molecules and reduced ion transportation, making these structures promising for desalination processes. By adding a flocculant ingredient (ferric chloride) to the salt water, we found even larger ion rejection rates. All the results point out the importance of studying hydrophilic and hydrophobic interfaces for water transport. In all the cases, we have found an ubiquitous dependence of water dynamic properties on the surface polarity.
4

Mechanisms of formation and dissociation of cyclopentane hydrates / Mécanismes de formation et dissociation d’hydrates de cyclopentane

Martinez de Baños, Maria Lourdes 13 November 2015 (has links)
Les mécanismes de formation et dissociation d’hydrates de cyclopentane (CP), qui forment á pression ambiante et á des températures entre 0ºC et 7ºC, ont été observés dans/sur/proche des gouttes d’eau immergées dans du CP á des échelles qui vont du micron jusqu’au millimètre. Plusieurs techniques d’observation ont été utilisées, telles que la macrophotographie et la microscopie optique en champ clair, par contraste interférentiel différentiel (CID), par fluorescence et par réflectance confocale. Des substrats hydrophiles et hydrophobes ont été utilisés. Dans une première série d’expériences, un procédé millifluidique simple a été mis au point. Il permet de générer, stocker et surveiller simultanément une centaine de gouttelettes de même volume (de l’ordre de μl), régulièrement espacées. Elles sont séparées par la phase ‘invité’ (CP) dans un tuyau en polymère fluoré (PFA) transparent. Chacune d’elles se comporte comme un réacteur indépendant. Une vision sur l’effet mémoire est obtenue en menant des mesures statistiques sur la nucléation des hydrates quand les gouttes d’eau sont refroidies au-dessous de 7°C. Cette méthode permet aussi de visualiser des événements dans des gouttes individuelles, tels que la naissance et la croissance de l’hydrate (surtout lorsqu’un additive tel qu’un inhibiteur est rajouté dans l’eau), ainsi que la formation d’une émulsion de CP dans l’eau pendant la dissociation de l’hydrate. Dans une deuxième série d’expériences, une seule goutte d’eau est posée ou pendue d’un substrat en verre et immergée dans du CP. Elle est observée par microscopie sous des séquences différentes de refroidissement – échauffement. Il a été observé que la cristallisation d’hydrates dépend fortement du sous-refroidissement. Deux nouveaux phénomènes ont été observés:(i) la propagation d’un « halo » d’hydrate le long de l’interface verre/CP depuis la ligne de contact de la goutte d’eau.(ii) cristallisation de l’hydrate dans une émulsion 2D de CP dans l’eau.Les deux types d’outils développés dans cette thèse ouvrent des nouvelles perspectives pour élucider les mécanismes de formation et dissociation d’hydrates en présence d’additives (promoteurs et inhibiteurs) et en présence d’un substrat minéral. Les applications comprennent les hydrates dans des environnements sédimentaires, séparation de gaz, etc. / The mechanisms of formation and dissociation of cyclopentane (CP) hydrates, which form at ambient pressure and temperatures between 0°C and 7°C, have been observed in/on/near water drops immersed in CP at scales ranging from a few nanometers to the millimeter by a variety of techniques including macrophotography and optical microscopy under various modes: bright field, differential interference contrast (DIC), fluorescence and confocal reflectance. The substrates used are either hydrophobic or hydrophilic. In a first series of experiments, a simple millifluidic method is implemented. It allows to generate, store and monitor at the same time almost a hundred of regularly-spaced water droplets of equal volume (in the µl range) separated by the guest (CP) phase in a transparent fluorinated polymeric (PFA) (hydrophobic) tubing, each droplet behaving as an independent reactor for hydrate crystallization. Insights into the ‘memory effect’ are gained by measuring the statistics of hydrate nucleation events in these reactors when chilling below 7°C the water drops. The method also allows the visualization of single-drop events such as hydrate birth and growth, and the formation of a CP-in-water emulsion upon hydrate melting, especially when an additive such as an inhibitor is added to the water. In a second series of experiments, a single water droplet in CP, either sitting or hanging from a glass substrate, is observed by microscopy under various cooling and heating sequences. Hydrate crystallization (nucleation and growth) is observed to strongly depend on subcooling at the water drop/CP interface. Two novel phenomena are visualized in detail:(i) the propagation, from the contact line of the water drop, of a hydrate halo along the glass/CP interface. (ii) hydrate crystallization in a two-dimensional CP-in-water emulsion.The two types of tools developed in this thesis open new perspectives for elucidating the mechanisms of hydrate formation and dissociation in presence of additives (promoters and inhibitors) and in the presence of a mineral substrate. Applications include hydrates in sedimentary environments, flow assurance, gas separation, etc.
5

Collage de silicium et d'oxyde de silicium : mécanismes mis en jeu / Direct bonding of silicon and silicon oxides : mechanisms involved

Rauer, Caroline 09 July 2014 (has links)
Le collage direct consiste en la mise en contact de deux surfaces suffisamment lisses et propres pour qu'une adhésion puisse se créer sans ajout de matière à l'interface. Ce procédé réalisable à l'échelle industrielle trouve son intérêt dans l'empilement de structures ou de matériaux pour la microélectronique ou les microtechnologies. Il s'avère alors important de maîtriser ce procédé et cela passe notamment par la compréhension des mécanismes physico-chimique se produisant lors du collage. Le but de ce travail de thèse est donc l'étude des mécanismes mis en jeu dans le collage hydrophobe de silicium et le collage hydrophile d'oxydes de silicium déposés.Dans cette étude, des procédés de collage direct hydrophobe de plaques de silicium (100) reconstruit ont été développés, ainsi que des collages de surfaces hydrophiles d'oxyde de silicium déposés préparées par des activations plasma azote ou oxygène ou par un procédé de polissage mécano-chimique. Le comportement de toutes ces structures a été étudié à plusieurs stades du procédé, en particulier lors des traitements thermiques de consolidation de l'interface de collage. Pour ce faire, différentes techniques de caractérisation ont été mises en oeuvre comme la mesure d'énergie de collage, l'observation de la défectivité par microscopie acoustique, la spectroscopie infrarouge et la réflectivité des rayons X. Cela a ainsi permis de suivre la fermeture de l'interface de collage en température d'un point de vue chimique et mécanique et des mécanismes de collage ont alors pu être proposés pour toutes les structures étudiées. Des recommandations ont également pu être faites pour l'obtention de collages d'oxydes de silicium déposés efficaces et de qualité. / Direct wafer bonding refers to a process by which two mirror-polished wafers are put into contact and held together at room temperature by adhesive force, without any additional material. This technology feasible at an industrial scale generates wide interest for the realization of stacked structures for microelectronics or microtechnologies. In this context, a precise understanding of bonding mechanisms is necessary. Consequently, the aim of this work is to study the bonding mechanisms for hydrophobic silicon reconstructed surfaces and hydrophilic deposited silicon oxides surfacesIn this study, bonding of hydrophobic silicon reconstructed surfaces and bonding of hydrophilic deposited silicon oxides prepared either by plasma activation or chemical-mechanical polishing were analyzed, as a function of post-bonding annealing temperature. For this, several characterization techniques have been used: bonding energy measurement, acoustic microscopy in order to observe defectivity, infrared spectroscopy and X-Ray reflectivity. Thus the bonding interface closure has been analyzed from a chemical and mechanical point of view and bonding mechanisms have been proposed for the studied bonded structures. Finally the study of deposited silicon oxide bonding prepared either by plasma activation or by chemical-mechanical polishing has lead to some recommendations for efficient and high quality deposited silicon oxides bonding.

Page generated in 0.0693 seconds