• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • Tagged with
  • 18
  • 15
  • 15
  • 15
  • 15
  • 12
  • 12
  • 12
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SÍNTESE E CARACTERIZAÇÃO DE PORFIRINAS POLARES VISANDO A OBTENÇÃO DE COMPOSTOS HIDROFÍLICOS

Jesus, Daniel Rodrigo Pereira de 04 March 2011 (has links)
Made available in DSpace on 2017-07-24T19:38:05Z (GMT). No. of bitstreams: 1 Daniel Jesus.pdf: 2167647 bytes, checksum: 9b9dfa5da603f3320bb70052de09b06f (MD5) Previous issue date: 2011-03-04 / Porphyrins and its derivatives are of significant importance due to their physical, chemical and essential biological properties. The uses of porphyrins and metalloporphyrins include: photodynamic therapeutics; oxidation catalysts; components of printing inks and toners; and protective coatings. In addition, in the past few years, there has been extensive use of porphyrins in molecular electronics and other new materials. Such importance has prompted extensive studies on the synthesis of porphyrins. Therefore, the study on synthetic methods to improve the yields of porphyrins is of great significance. In this work some porphyrins were synthesized, with emphasis on water-soluble compounds. It was based on the classical Adler-Longo method and some modifications were made which led to yields 50% higher than those described in literature for some precursors of cationic and anionic compounds. For instance, DMAPP 37 lead to cationic metalloporphyrin 34 which is more water-soluble than the correspondent free base porphyrin, which will allow further research of toxic effects of hydrophilic porphyrins on microorganisms. Synthesized compounds. / Porfirinas e seus derivados são de importância significativa devido às suas características físicas, químicas e propriedades biológicas essenciais. Os usos de porfirinas e metaloporfirinas incluem: terapêutica fotodinâmica; catalisadores de oxidação; componentes de tintas de impressão e toners, e revestimentos de proteção. Além disso, nos últimos anos, houve uso extensivo de porfirinas em eletrônica molecular e outros novos materiais. Tal importância tem promovido extensos estudos sobre a síntese de porfirinas nos últimos anos. Portanto, o estudo sobre os métodos sintéticos para melhorar o rendimento de porfirinas é de grande importância. Neste trabalho algumas porfirinas foram sintetizadas, com ênfase em compostos solúveis em água. Foi utilizado o clássico método de Adler-Longo e algumas modificações foram feitas o que levou a rendimentos de até 50% superior ao de literatura de alguns precursores de compostos catiónicos e aniónicos. O composto 37 levou a uma metaloporfirina catiônica 34 mais solúvel em água do que a porfirina base livre correspondente, isso permitirá, em pesquisa continuada, a realização de novos estudos dos efeitos tóxicos de porfirinas hidrofílicas em microorganismos. Compostos sintetizados.
2

Estrutura e mobilidade de água confinada em nanotubos de fosfato de alumínio e de líquidos anômalos em nanoconfinamento

Gavazzoni, Cristina January 2017 (has links)
A água é fundamental para a existência e sustentabilidade da vida. Consequentemente o seu comportamento isolado ou em contato com solventes tem sido amplamente estudado. Apesar disto, ainda existem propriedades da água que são pouco compreendidas. Recentemente em experimentos e simulações com água confinada novas anomalias e comportamentos surpreendentes foram encontrados. Água confinada tem importância para física, química, geologia, biologia, etc e tem relevância em aplicações tecnológicas como em processos de catálise, separação de fases, fabricação de nanomateriais etc. Portanto, entender o comportamento da água nessas condições é essencial. O confinamento altera drasticamente as propriedades da água e essas mudanças variam dependendo do tipo de confinamento imposto ao sistema. Estudos de água confinada em sílica sugerem que a água no interior do nanotubo cristaliza a uma temperatura menor que a temperatura de congelamento do bulk (água não confinada) dependendo do tamanho do nanotubo, porém a água em contato com a parede permanece líquida. Em nanotubos de carbono se verificou que a água congela para pressões altas a uma temperatura menor que a temperatura do bulk, no entanto, água confinada entre placas de carbono ativado congela a T = 303K. Super fluxo de água foi observado em nanotubos de carbono com diâmetro menor do que 2nm devido a formação de uma estrutura single line. Fluxo maior do que o esperado pelas equações da hidrodinâmica também foi observado para nanotubos hidrofílicos, no entanto esse fluxo ainda é menor do que o obtido para nanotubos de carbono. Nanotubos de AlPO4-54 são nanotubos facilmente preparados de forma altamente cristalina. Eles apresentam regiões hidrofílica e hidrofóbicas o que pode auxiliar no fluxo de moléculas de água no seu interior fazendo desses nanotubos bons candidatos para aplicações em tratamentos de água. No entanto, o comportamento da água no interior desses nanotubos não é bem compreendido. Nesse trabalho analisamos propriedades estruturais e dinâmicas de água confinada em AlPO4-54 para vários valores de temperatura e ocupação do nanotubo. Concluímos que a estrutura da água é controlada pela heterogeneidade do nanotubo com moléculas de água da camada de contato preferencialmente localizadas próximas aos oxigênios do AlPO4-54 consequentemente, para baixas densidades, a água forma uma estrutura helicoidal do tipo single line. Além disso, estudamos um sistema de dímeros Janus confinados entre placas lisas com o objetivo de estudar os efeitos do confinamento para o modelo proposto. Identificamos a formação de diversas estruturas self-assembled incluindo uma estrutura que apresenta regime superdifusivo. / Water is fundamental to the existence and sustainability of life. Consequently its behavior, isolated or in contact with solvents, has been widely studied. Nevertheless, there are still water properties that are poorly understood. Recently in experiments and simulations with confined water new anomalies and amazing behaviors were found. Confined water is important for physics, chemistry, geology, biology, etc. and has relevant applications in technological processes as in catalysis, phase separation, manufacturing of nanomaterials, therefore, understanding the behavior of water in these conditions is very important. Confinement changes drastically the properties of the water and these changes depend on the type of confinement. Studies on water confined on silica nanotubes suggest that the water in the inner region of the pores crystallizes at a temperature bellow the freezing temperature of the bulk water (non-confined water) depending on the size of the nanotube, but the water in contact with the wall remains liquid. On carbon nanotubes, was found that the water freezes at high pressures and at a temperature below the freezing temperature of the bulk, on the other hand, water confined inside activated carbon wall freezes at T = 303K. Superflow was observed in carbon nanotubes with diameter lower then 2 nm due to the formation of a single line structure. Flow in hydrophilic nanotubes is larger than the expected from hydrodynamic equations but is much smaller than for the case of carbon nanotube. AlPO4-54 nanotubes are easily prepared in monodisperse crystalline structures. They have both hydrophobic and hydrophilic groups which may help the flux of water molecules inside the nanotube making these nanotubes great candidates for water treatment aplications. However, the behavior of water confined inside AlPO4-54 nanotubes is not well understood. In this work, the structural and dynamical properties of the confined water in AlPO4-54 nanotubes are analyzed for various temperatures and water loadings. We find that the water structure is controlled by the heterogeneity of the nanopore surface with the water molecules located preferentially next to the surface of oxygens of the AlPO4-54 consequently, at very low densities, water forms helicoidal structures in string-like arrangements. In addition, we studied a Janus dumbbels system confined between smooth plates in order to study the effects of confinement on the proposed model. We have identified the formation of several self-assembled structures including a structure which has a superdiffusive regime.
3

Estrutura e mobilidade de água confinada em nanotubos de fosfato de alumínio e de líquidos anômalos em nanoconfinamento

Gavazzoni, Cristina January 2017 (has links)
A água é fundamental para a existência e sustentabilidade da vida. Consequentemente o seu comportamento isolado ou em contato com solventes tem sido amplamente estudado. Apesar disto, ainda existem propriedades da água que são pouco compreendidas. Recentemente em experimentos e simulações com água confinada novas anomalias e comportamentos surpreendentes foram encontrados. Água confinada tem importância para física, química, geologia, biologia, etc e tem relevância em aplicações tecnológicas como em processos de catálise, separação de fases, fabricação de nanomateriais etc. Portanto, entender o comportamento da água nessas condições é essencial. O confinamento altera drasticamente as propriedades da água e essas mudanças variam dependendo do tipo de confinamento imposto ao sistema. Estudos de água confinada em sílica sugerem que a água no interior do nanotubo cristaliza a uma temperatura menor que a temperatura de congelamento do bulk (água não confinada) dependendo do tamanho do nanotubo, porém a água em contato com a parede permanece líquida. Em nanotubos de carbono se verificou que a água congela para pressões altas a uma temperatura menor que a temperatura do bulk, no entanto, água confinada entre placas de carbono ativado congela a T = 303K. Super fluxo de água foi observado em nanotubos de carbono com diâmetro menor do que 2nm devido a formação de uma estrutura single line. Fluxo maior do que o esperado pelas equações da hidrodinâmica também foi observado para nanotubos hidrofílicos, no entanto esse fluxo ainda é menor do que o obtido para nanotubos de carbono. Nanotubos de AlPO4-54 são nanotubos facilmente preparados de forma altamente cristalina. Eles apresentam regiões hidrofílica e hidrofóbicas o que pode auxiliar no fluxo de moléculas de água no seu interior fazendo desses nanotubos bons candidatos para aplicações em tratamentos de água. No entanto, o comportamento da água no interior desses nanotubos não é bem compreendido. Nesse trabalho analisamos propriedades estruturais e dinâmicas de água confinada em AlPO4-54 para vários valores de temperatura e ocupação do nanotubo. Concluímos que a estrutura da água é controlada pela heterogeneidade do nanotubo com moléculas de água da camada de contato preferencialmente localizadas próximas aos oxigênios do AlPO4-54 consequentemente, para baixas densidades, a água forma uma estrutura helicoidal do tipo single line. Além disso, estudamos um sistema de dímeros Janus confinados entre placas lisas com o objetivo de estudar os efeitos do confinamento para o modelo proposto. Identificamos a formação de diversas estruturas self-assembled incluindo uma estrutura que apresenta regime superdifusivo. / Water is fundamental to the existence and sustainability of life. Consequently its behavior, isolated or in contact with solvents, has been widely studied. Nevertheless, there are still water properties that are poorly understood. Recently in experiments and simulations with confined water new anomalies and amazing behaviors were found. Confined water is important for physics, chemistry, geology, biology, etc. and has relevant applications in technological processes as in catalysis, phase separation, manufacturing of nanomaterials, therefore, understanding the behavior of water in these conditions is very important. Confinement changes drastically the properties of the water and these changes depend on the type of confinement. Studies on water confined on silica nanotubes suggest that the water in the inner region of the pores crystallizes at a temperature bellow the freezing temperature of the bulk water (non-confined water) depending on the size of the nanotube, but the water in contact with the wall remains liquid. On carbon nanotubes, was found that the water freezes at high pressures and at a temperature below the freezing temperature of the bulk, on the other hand, water confined inside activated carbon wall freezes at T = 303K. Superflow was observed in carbon nanotubes with diameter lower then 2 nm due to the formation of a single line structure. Flow in hydrophilic nanotubes is larger than the expected from hydrodynamic equations but is much smaller than for the case of carbon nanotube. AlPO4-54 nanotubes are easily prepared in monodisperse crystalline structures. They have both hydrophobic and hydrophilic groups which may help the flux of water molecules inside the nanotube making these nanotubes great candidates for water treatment aplications. However, the behavior of water confined inside AlPO4-54 nanotubes is not well understood. In this work, the structural and dynamical properties of the confined water in AlPO4-54 nanotubes are analyzed for various temperatures and water loadings. We find that the water structure is controlled by the heterogeneity of the nanopore surface with the water molecules located preferentially next to the surface of oxygens of the AlPO4-54 consequently, at very low densities, water forms helicoidal structures in string-like arrangements. In addition, we studied a Janus dumbbels system confined between smooth plates in order to study the effects of confinement on the proposed model. We have identified the formation of several self-assembled structures including a structure which has a superdiffusive regime.
4

Escoamento de um fluido tipo-água nanoconfinado

Dallagnollo, Patricia Ternes January 2018 (has links)
Nesta tese, estudamos o comportamento de um fluido tipo-água nanoconfinado entre placas paralelas rugosas e termalizadas. Primeiro analisamos o comportamento do diagrama de fases temperatura versus densidade desse sistema. Encontramos que o fluido se estrutura em camadas, sendo o número de camadas relacionado com o grau de confinamento. Mudanças no número de camadas também estão associadas com transições de fases de primeira ordem das camadas de contato. A estrutura, as regiões de transições de fases e os pontos críticos encontrados, são afetados pela estrutura das placas. De posse do diagrama de fases do sistema em equilíbrio, estudamos o comportamento desse fluido fora do equilíbrio. Observamos que para um regime de velocidade de escoamento muito baixa o fluido permanece com a estrutura idêntica a estrutura de equilíbrio. Para velocidades de escoamentos grandes observamos que as camadas centrais são destruídas passando a apresentar um comportamento tipo bulk. As camadas de contato apresentam uma estrutura diferente do observado para baixas velocidades, sendo consideradas em fase líquidas. Esse comportamento foi observado para densidades e temperaturas distintas. Nesse regime de escoamento a condição de não-deslizamento não é cumprida. Determinamos através de uma análise média de movimento que toda a camada adjacente à placa se move em relação à ela. / In this thesis we study the behavior of a waterlike fluid nanoconfined between rough and thermalized parallel plates. First, we analyzed the temperature versus density phase diagram of this system. We found that the fluid is structured in layers, and that number of layers is related with the degree of confinement. Changes in the number of layers are also associated with first order phase transitions. The structure, the transitions phase regions and the critical points, are affected by the plates structure. With the phase diagram of the equilibrium system, we studied the behavior of this fluid in a non-equilibrium system. We observed that for a very low velocity regime of flow the fluid structure is identical to the structure in equilibrium state. For high flow velocities we observed that the central layers are destroyed and start to present a bulk-like behavior. The contact layers present a different structure of the observed for low velocities, been considered in liquid phase. This behavior was observed for distinct densities and temperatures. In this flow regime the no-slip condition is not fulfilled. We determined, by an average analyze of the movement, that the contact layer move in relation to plate.
5

Estudo de anomalias e transições de fase em fluidos nanoconfinados

Krott, Leandro Batirolla January 2015 (has links)
Neste trabalho, estudamos fluidos tipo-água confinados por placas. Primeiramente revisamos um modelo simples, em que o fluido é composto por partículas esféricas que interagem através de um potencial de duas escalas. Apresentamos os resultados do confinamento deste modelo por placas paralelas, fixas, rugosas e fracamente hidrofóbicas. Além de apresentar formação de camadas, o confinamento por placas também provoca mudanças significativas na termodinâmicas e na dinâmica do fluido. Enquanto que a anomalia na difusão começa a se manifestar para temperaturas mais baixas, a anomalia na densidade é deslocada para temperaturas mais baixas, pressões e densidades mais altas. Isto indica que sistemas confinados podem trazer entendimentos interessantes sobre a região metaestável de sistemas não-confinados. Também analisamos sistemas confinados por placas rugosas hidrofóbicas e hidrofílicas. Nosso modelo considera cinco tipos de inteirações partícula-parede, sendo três delas do tipo hidrofóbica e duas do tipo hidrofílica. Os efeitos dos tipos de interação partícula-parede sobre as propriedades do sistema são bastante diferentes. Enquanto que placas hidrofílicas tendem a facilitar a cristalização das partículas, placas hidrofóbicas diminuem a temperatura de cristalização da camada de contato, aumentando a região líquida do diagrama de fases em comparação com o bulk. O aumento da hidrofobicidade provoca um deslocamento das propriedades do fluido para uma região do diagrama de fases de temperaturas mais baixas comparadas ao bulk, enquanto que o aumento da hidrofilicidade provoca um deslocamento destas mesmas propriedades para uma região de temperaturas mais altas. Os efeitos da mobilidade das placas também são analisados. Abordamos dois tipos de confinamento: placas lisas e fixas, simuladas no ensemble NV T, e placas lisas e flutuantes, simuladas no ensemble NP⊥T. Observamos que o fluido tipo-água confinado por placas flutuantes apresenta uma estrutura em camadas, sem transição de fases entre elas, o que resulta num comportamento dinâmico normal e sem a presença da anomalia na difusão. Este resultado ´e devido à contribuição entrópica das placas na energia livre do sistema. Quando fixamos as placas, além de observarmos a transição de fase estrutural do fluido, também observamos que a anomalia na difusão aparece, como resultado de uma contribuição entálpica na energia livre do sistema. Três transições de fase de primeiro ordem são observadas nas camadas de contato do fluido confinado por placas fixas. Para altas densidades, observamos que o fluido transiciona de um sólido hexagonal para um cristal-líquido e posteriormente para um fluido. Por último, analisamos a influência da rugosidade das placas sobre as propriedades de um fluido tipo-água com a presença da transição líquido-líquido. Simulamos sistemas confinados por placas lisas, modeladas por um campo de força, e rugosas, onde as placas são formadas por partículas. O efeito do confinamento por estes dois tipos de superfície provoca mudanças significativas na solidificação das partículas e também tem efeito considerável sobre a localização dos pontos críticos vapor-líquido e líquido-líquido. / In this work, we studied waterlike fluids confined between plates. First, a simple model for bulk water, in which the fluid is formed by spherical particles that interact through a two-length scale potential, was introduced. The effect of the confinement of this model by parallel, fixed, rough and weakly hydrophobic plates was analyzed. In addition to the formation of layers, the confinement by plates also promotes significant changes in the thermodynamic and dynamic properties of the fluid. While the diffusion anomaly appears at lower temperatures, the density anomaly is shifted to lower temperatures, higher pressures and higher densities. This indicates that confined systems can be used to understand properties that in the bulk occur at unstable regions of the pressure versus temperature phase diagram. We also analyzed the confinement of hydrophobic and hydrophilic rough plates. In our model, we consider five types of particle-plate interaction potentials, where three were hydrophobic and the two were hydrophilic. The effects of different types of confinements in the anomalous properties of the waterlike fluid are very dependent of the nature of interaction between fluid and surfaces. The hydrophilic surface induce crystallization of the contact layers, but the hydrophobic one maintains the system in liquid state. Increasing the hydrophobicity, the properties of the fluid are shifted to lower temperatures in relation to bulk, while the increase of hydrophilicity causes a shifting to higher temperatures. The effects of the mobility of the plates were also analyzed. We studied two types of confinement: smooth and fixed plates, simulated in NV T-constant ensemble, and smooth and fluctuating plates, simulated in NP⊥T-constant ensemble. When the waterlike fluid is confined between fluctuating plates, a layering structure is observed without phase transition and without diffusion anomaly. This is due the entropic contribution in the total free energy. When the fluid is confined between fixed plates, besides the structural phase transition, the diffusion anomaly is observed, due the entalpy of the system. Three structural phase transitions were observed in the contact layer for fixed plates. For high densities, a hexagonal solid change to a crystal-liquidlike and after a fluid. We finally analyzed the influence of roughness of the plates in the properties of a waterlike fluid with liquid-liquid phase transition. We confined the fluid between smooth plates, modeled by a force field, and rough plates, constructed whit spherical particles. The confinement effect by the two kinds of confinements are strong in the solid-fluid phase transition and in the location of the anomalies and critical points.
6

Estrutura e mobilidade de água confinada em nanotubos de fosfato de alumínio e de líquidos anômalos em nanoconfinamento

Gavazzoni, Cristina January 2017 (has links)
A água é fundamental para a existência e sustentabilidade da vida. Consequentemente o seu comportamento isolado ou em contato com solventes tem sido amplamente estudado. Apesar disto, ainda existem propriedades da água que são pouco compreendidas. Recentemente em experimentos e simulações com água confinada novas anomalias e comportamentos surpreendentes foram encontrados. Água confinada tem importância para física, química, geologia, biologia, etc e tem relevância em aplicações tecnológicas como em processos de catálise, separação de fases, fabricação de nanomateriais etc. Portanto, entender o comportamento da água nessas condições é essencial. O confinamento altera drasticamente as propriedades da água e essas mudanças variam dependendo do tipo de confinamento imposto ao sistema. Estudos de água confinada em sílica sugerem que a água no interior do nanotubo cristaliza a uma temperatura menor que a temperatura de congelamento do bulk (água não confinada) dependendo do tamanho do nanotubo, porém a água em contato com a parede permanece líquida. Em nanotubos de carbono se verificou que a água congela para pressões altas a uma temperatura menor que a temperatura do bulk, no entanto, água confinada entre placas de carbono ativado congela a T = 303K. Super fluxo de água foi observado em nanotubos de carbono com diâmetro menor do que 2nm devido a formação de uma estrutura single line. Fluxo maior do que o esperado pelas equações da hidrodinâmica também foi observado para nanotubos hidrofílicos, no entanto esse fluxo ainda é menor do que o obtido para nanotubos de carbono. Nanotubos de AlPO4-54 são nanotubos facilmente preparados de forma altamente cristalina. Eles apresentam regiões hidrofílica e hidrofóbicas o que pode auxiliar no fluxo de moléculas de água no seu interior fazendo desses nanotubos bons candidatos para aplicações em tratamentos de água. No entanto, o comportamento da água no interior desses nanotubos não é bem compreendido. Nesse trabalho analisamos propriedades estruturais e dinâmicas de água confinada em AlPO4-54 para vários valores de temperatura e ocupação do nanotubo. Concluímos que a estrutura da água é controlada pela heterogeneidade do nanotubo com moléculas de água da camada de contato preferencialmente localizadas próximas aos oxigênios do AlPO4-54 consequentemente, para baixas densidades, a água forma uma estrutura helicoidal do tipo single line. Além disso, estudamos um sistema de dímeros Janus confinados entre placas lisas com o objetivo de estudar os efeitos do confinamento para o modelo proposto. Identificamos a formação de diversas estruturas self-assembled incluindo uma estrutura que apresenta regime superdifusivo. / Water is fundamental to the existence and sustainability of life. Consequently its behavior, isolated or in contact with solvents, has been widely studied. Nevertheless, there are still water properties that are poorly understood. Recently in experiments and simulations with confined water new anomalies and amazing behaviors were found. Confined water is important for physics, chemistry, geology, biology, etc. and has relevant applications in technological processes as in catalysis, phase separation, manufacturing of nanomaterials, therefore, understanding the behavior of water in these conditions is very important. Confinement changes drastically the properties of the water and these changes depend on the type of confinement. Studies on water confined on silica nanotubes suggest that the water in the inner region of the pores crystallizes at a temperature bellow the freezing temperature of the bulk water (non-confined water) depending on the size of the nanotube, but the water in contact with the wall remains liquid. On carbon nanotubes, was found that the water freezes at high pressures and at a temperature below the freezing temperature of the bulk, on the other hand, water confined inside activated carbon wall freezes at T = 303K. Superflow was observed in carbon nanotubes with diameter lower then 2 nm due to the formation of a single line structure. Flow in hydrophilic nanotubes is larger than the expected from hydrodynamic equations but is much smaller than for the case of carbon nanotube. AlPO4-54 nanotubes are easily prepared in monodisperse crystalline structures. They have both hydrophobic and hydrophilic groups which may help the flux of water molecules inside the nanotube making these nanotubes great candidates for water treatment aplications. However, the behavior of water confined inside AlPO4-54 nanotubes is not well understood. In this work, the structural and dynamical properties of the confined water in AlPO4-54 nanotubes are analyzed for various temperatures and water loadings. We find that the water structure is controlled by the heterogeneity of the nanopore surface with the water molecules located preferentially next to the surface of oxygens of the AlPO4-54 consequently, at very low densities, water forms helicoidal structures in string-like arrangements. In addition, we studied a Janus dumbbels system confined between smooth plates in order to study the effects of confinement on the proposed model. We have identified the formation of several self-assembled structures including a structure which has a superdiffusive regime.
7

Escoamento de um fluido tipo-água nanoconfinado

Dallagnollo, Patricia Ternes January 2018 (has links)
Nesta tese, estudamos o comportamento de um fluido tipo-água nanoconfinado entre placas paralelas rugosas e termalizadas. Primeiro analisamos o comportamento do diagrama de fases temperatura versus densidade desse sistema. Encontramos que o fluido se estrutura em camadas, sendo o número de camadas relacionado com o grau de confinamento. Mudanças no número de camadas também estão associadas com transições de fases de primeira ordem das camadas de contato. A estrutura, as regiões de transições de fases e os pontos críticos encontrados, são afetados pela estrutura das placas. De posse do diagrama de fases do sistema em equilíbrio, estudamos o comportamento desse fluido fora do equilíbrio. Observamos que para um regime de velocidade de escoamento muito baixa o fluido permanece com a estrutura idêntica a estrutura de equilíbrio. Para velocidades de escoamentos grandes observamos que as camadas centrais são destruídas passando a apresentar um comportamento tipo bulk. As camadas de contato apresentam uma estrutura diferente do observado para baixas velocidades, sendo consideradas em fase líquidas. Esse comportamento foi observado para densidades e temperaturas distintas. Nesse regime de escoamento a condição de não-deslizamento não é cumprida. Determinamos através de uma análise média de movimento que toda a camada adjacente à placa se move em relação à ela. / In this thesis we study the behavior of a waterlike fluid nanoconfined between rough and thermalized parallel plates. First, we analyzed the temperature versus density phase diagram of this system. We found that the fluid is structured in layers, and that number of layers is related with the degree of confinement. Changes in the number of layers are also associated with first order phase transitions. The structure, the transitions phase regions and the critical points, are affected by the plates structure. With the phase diagram of the equilibrium system, we studied the behavior of this fluid in a non-equilibrium system. We observed that for a very low velocity regime of flow the fluid structure is identical to the structure in equilibrium state. For high flow velocities we observed that the central layers are destroyed and start to present a bulk-like behavior. The contact layers present a different structure of the observed for low velocities, been considered in liquid phase. This behavior was observed for distinct densities and temperatures. In this flow regime the no-slip condition is not fulfilled. We determined, by an average analyze of the movement, that the contact layer move in relation to plate.
8

Estudo de anomalias e transições de fase em fluidos nanoconfinados

Krott, Leandro Batirolla January 2015 (has links)
Neste trabalho, estudamos fluidos tipo-água confinados por placas. Primeiramente revisamos um modelo simples, em que o fluido é composto por partículas esféricas que interagem através de um potencial de duas escalas. Apresentamos os resultados do confinamento deste modelo por placas paralelas, fixas, rugosas e fracamente hidrofóbicas. Além de apresentar formação de camadas, o confinamento por placas também provoca mudanças significativas na termodinâmicas e na dinâmica do fluido. Enquanto que a anomalia na difusão começa a se manifestar para temperaturas mais baixas, a anomalia na densidade é deslocada para temperaturas mais baixas, pressões e densidades mais altas. Isto indica que sistemas confinados podem trazer entendimentos interessantes sobre a região metaestável de sistemas não-confinados. Também analisamos sistemas confinados por placas rugosas hidrofóbicas e hidrofílicas. Nosso modelo considera cinco tipos de inteirações partícula-parede, sendo três delas do tipo hidrofóbica e duas do tipo hidrofílica. Os efeitos dos tipos de interação partícula-parede sobre as propriedades do sistema são bastante diferentes. Enquanto que placas hidrofílicas tendem a facilitar a cristalização das partículas, placas hidrofóbicas diminuem a temperatura de cristalização da camada de contato, aumentando a região líquida do diagrama de fases em comparação com o bulk. O aumento da hidrofobicidade provoca um deslocamento das propriedades do fluido para uma região do diagrama de fases de temperaturas mais baixas comparadas ao bulk, enquanto que o aumento da hidrofilicidade provoca um deslocamento destas mesmas propriedades para uma região de temperaturas mais altas. Os efeitos da mobilidade das placas também são analisados. Abordamos dois tipos de confinamento: placas lisas e fixas, simuladas no ensemble NV T, e placas lisas e flutuantes, simuladas no ensemble NP⊥T. Observamos que o fluido tipo-água confinado por placas flutuantes apresenta uma estrutura em camadas, sem transição de fases entre elas, o que resulta num comportamento dinâmico normal e sem a presença da anomalia na difusão. Este resultado ´e devido à contribuição entrópica das placas na energia livre do sistema. Quando fixamos as placas, além de observarmos a transição de fase estrutural do fluido, também observamos que a anomalia na difusão aparece, como resultado de uma contribuição entálpica na energia livre do sistema. Três transições de fase de primeiro ordem são observadas nas camadas de contato do fluido confinado por placas fixas. Para altas densidades, observamos que o fluido transiciona de um sólido hexagonal para um cristal-líquido e posteriormente para um fluido. Por último, analisamos a influência da rugosidade das placas sobre as propriedades de um fluido tipo-água com a presença da transição líquido-líquido. Simulamos sistemas confinados por placas lisas, modeladas por um campo de força, e rugosas, onde as placas são formadas por partículas. O efeito do confinamento por estes dois tipos de superfície provoca mudanças significativas na solidificação das partículas e também tem efeito considerável sobre a localização dos pontos críticos vapor-líquido e líquido-líquido. / In this work, we studied waterlike fluids confined between plates. First, a simple model for bulk water, in which the fluid is formed by spherical particles that interact through a two-length scale potential, was introduced. The effect of the confinement of this model by parallel, fixed, rough and weakly hydrophobic plates was analyzed. In addition to the formation of layers, the confinement by plates also promotes significant changes in the thermodynamic and dynamic properties of the fluid. While the diffusion anomaly appears at lower temperatures, the density anomaly is shifted to lower temperatures, higher pressures and higher densities. This indicates that confined systems can be used to understand properties that in the bulk occur at unstable regions of the pressure versus temperature phase diagram. We also analyzed the confinement of hydrophobic and hydrophilic rough plates. In our model, we consider five types of particle-plate interaction potentials, where three were hydrophobic and the two were hydrophilic. The effects of different types of confinements in the anomalous properties of the waterlike fluid are very dependent of the nature of interaction between fluid and surfaces. The hydrophilic surface induce crystallization of the contact layers, but the hydrophobic one maintains the system in liquid state. Increasing the hydrophobicity, the properties of the fluid are shifted to lower temperatures in relation to bulk, while the increase of hydrophilicity causes a shifting to higher temperatures. The effects of the mobility of the plates were also analyzed. We studied two types of confinement: smooth and fixed plates, simulated in NV T-constant ensemble, and smooth and fluctuating plates, simulated in NP⊥T-constant ensemble. When the waterlike fluid is confined between fluctuating plates, a layering structure is observed without phase transition and without diffusion anomaly. This is due the entropic contribution in the total free energy. When the fluid is confined between fixed plates, besides the structural phase transition, the diffusion anomaly is observed, due the entalpy of the system. Three structural phase transitions were observed in the contact layer for fixed plates. For high densities, a hexagonal solid change to a crystal-liquidlike and after a fluid. We finally analyzed the influence of roughness of the plates in the properties of a waterlike fluid with liquid-liquid phase transition. We confined the fluid between smooth plates, modeled by a force field, and rough plates, constructed whit spherical particles. The confinement effect by the two kinds of confinements are strong in the solid-fluid phase transition and in the location of the anomalies and critical points.
9

Estudo de anomalias e transições de fase em fluidos nanoconfinados

Krott, Leandro Batirolla January 2015 (has links)
Neste trabalho, estudamos fluidos tipo-água confinados por placas. Primeiramente revisamos um modelo simples, em que o fluido é composto por partículas esféricas que interagem através de um potencial de duas escalas. Apresentamos os resultados do confinamento deste modelo por placas paralelas, fixas, rugosas e fracamente hidrofóbicas. Além de apresentar formação de camadas, o confinamento por placas também provoca mudanças significativas na termodinâmicas e na dinâmica do fluido. Enquanto que a anomalia na difusão começa a se manifestar para temperaturas mais baixas, a anomalia na densidade é deslocada para temperaturas mais baixas, pressões e densidades mais altas. Isto indica que sistemas confinados podem trazer entendimentos interessantes sobre a região metaestável de sistemas não-confinados. Também analisamos sistemas confinados por placas rugosas hidrofóbicas e hidrofílicas. Nosso modelo considera cinco tipos de inteirações partícula-parede, sendo três delas do tipo hidrofóbica e duas do tipo hidrofílica. Os efeitos dos tipos de interação partícula-parede sobre as propriedades do sistema são bastante diferentes. Enquanto que placas hidrofílicas tendem a facilitar a cristalização das partículas, placas hidrofóbicas diminuem a temperatura de cristalização da camada de contato, aumentando a região líquida do diagrama de fases em comparação com o bulk. O aumento da hidrofobicidade provoca um deslocamento das propriedades do fluido para uma região do diagrama de fases de temperaturas mais baixas comparadas ao bulk, enquanto que o aumento da hidrofilicidade provoca um deslocamento destas mesmas propriedades para uma região de temperaturas mais altas. Os efeitos da mobilidade das placas também são analisados. Abordamos dois tipos de confinamento: placas lisas e fixas, simuladas no ensemble NV T, e placas lisas e flutuantes, simuladas no ensemble NP⊥T. Observamos que o fluido tipo-água confinado por placas flutuantes apresenta uma estrutura em camadas, sem transição de fases entre elas, o que resulta num comportamento dinâmico normal e sem a presença da anomalia na difusão. Este resultado ´e devido à contribuição entrópica das placas na energia livre do sistema. Quando fixamos as placas, além de observarmos a transição de fase estrutural do fluido, também observamos que a anomalia na difusão aparece, como resultado de uma contribuição entálpica na energia livre do sistema. Três transições de fase de primeiro ordem são observadas nas camadas de contato do fluido confinado por placas fixas. Para altas densidades, observamos que o fluido transiciona de um sólido hexagonal para um cristal-líquido e posteriormente para um fluido. Por último, analisamos a influência da rugosidade das placas sobre as propriedades de um fluido tipo-água com a presença da transição líquido-líquido. Simulamos sistemas confinados por placas lisas, modeladas por um campo de força, e rugosas, onde as placas são formadas por partículas. O efeito do confinamento por estes dois tipos de superfície provoca mudanças significativas na solidificação das partículas e também tem efeito considerável sobre a localização dos pontos críticos vapor-líquido e líquido-líquido. / In this work, we studied waterlike fluids confined between plates. First, a simple model for bulk water, in which the fluid is formed by spherical particles that interact through a two-length scale potential, was introduced. The effect of the confinement of this model by parallel, fixed, rough and weakly hydrophobic plates was analyzed. In addition to the formation of layers, the confinement by plates also promotes significant changes in the thermodynamic and dynamic properties of the fluid. While the diffusion anomaly appears at lower temperatures, the density anomaly is shifted to lower temperatures, higher pressures and higher densities. This indicates that confined systems can be used to understand properties that in the bulk occur at unstable regions of the pressure versus temperature phase diagram. We also analyzed the confinement of hydrophobic and hydrophilic rough plates. In our model, we consider five types of particle-plate interaction potentials, where three were hydrophobic and the two were hydrophilic. The effects of different types of confinements in the anomalous properties of the waterlike fluid are very dependent of the nature of interaction between fluid and surfaces. The hydrophilic surface induce crystallization of the contact layers, but the hydrophobic one maintains the system in liquid state. Increasing the hydrophobicity, the properties of the fluid are shifted to lower temperatures in relation to bulk, while the increase of hydrophilicity causes a shifting to higher temperatures. The effects of the mobility of the plates were also analyzed. We studied two types of confinement: smooth and fixed plates, simulated in NV T-constant ensemble, and smooth and fluctuating plates, simulated in NP⊥T-constant ensemble. When the waterlike fluid is confined between fluctuating plates, a layering structure is observed without phase transition and without diffusion anomaly. This is due the entropic contribution in the total free energy. When the fluid is confined between fixed plates, besides the structural phase transition, the diffusion anomaly is observed, due the entalpy of the system. Three structural phase transitions were observed in the contact layer for fixed plates. For high densities, a hexagonal solid change to a crystal-liquidlike and after a fluid. We finally analyzed the influence of roughness of the plates in the properties of a waterlike fluid with liquid-liquid phase transition. We confined the fluid between smooth plates, modeled by a force field, and rough plates, constructed whit spherical particles. The confinement effect by the two kinds of confinements are strong in the solid-fluid phase transition and in the location of the anomalies and critical points.
10

Escoamento de um fluido tipo-água nanoconfinado

Dallagnollo, Patricia Ternes January 2018 (has links)
Nesta tese, estudamos o comportamento de um fluido tipo-água nanoconfinado entre placas paralelas rugosas e termalizadas. Primeiro analisamos o comportamento do diagrama de fases temperatura versus densidade desse sistema. Encontramos que o fluido se estrutura em camadas, sendo o número de camadas relacionado com o grau de confinamento. Mudanças no número de camadas também estão associadas com transições de fases de primeira ordem das camadas de contato. A estrutura, as regiões de transições de fases e os pontos críticos encontrados, são afetados pela estrutura das placas. De posse do diagrama de fases do sistema em equilíbrio, estudamos o comportamento desse fluido fora do equilíbrio. Observamos que para um regime de velocidade de escoamento muito baixa o fluido permanece com a estrutura idêntica a estrutura de equilíbrio. Para velocidades de escoamentos grandes observamos que as camadas centrais são destruídas passando a apresentar um comportamento tipo bulk. As camadas de contato apresentam uma estrutura diferente do observado para baixas velocidades, sendo consideradas em fase líquidas. Esse comportamento foi observado para densidades e temperaturas distintas. Nesse regime de escoamento a condição de não-deslizamento não é cumprida. Determinamos através de uma análise média de movimento que toda a camada adjacente à placa se move em relação à ela. / In this thesis we study the behavior of a waterlike fluid nanoconfined between rough and thermalized parallel plates. First, we analyzed the temperature versus density phase diagram of this system. We found that the fluid is structured in layers, and that number of layers is related with the degree of confinement. Changes in the number of layers are also associated with first order phase transitions. The structure, the transitions phase regions and the critical points, are affected by the plates structure. With the phase diagram of the equilibrium system, we studied the behavior of this fluid in a non-equilibrium system. We observed that for a very low velocity regime of flow the fluid structure is identical to the structure in equilibrium state. For high flow velocities we observed that the central layers are destroyed and start to present a bulk-like behavior. The contact layers present a different structure of the observed for low velocities, been considered in liquid phase. This behavior was observed for distinct densities and temperatures. In this flow regime the no-slip condition is not fulfilled. We determined, by an average analyze of the movement, that the contact layer move in relation to plate.

Page generated in 0.4303 seconds