• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • Tagged with
  • 18
  • 18
  • 15
  • 11
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Substrats innovants pour des composants de puissance à base de GaN / Innovative substrates for GaN-based power devices

Cibie, Anthony 08 March 2019 (has links)
A l’heure actuelle, le marché de l’électronique de puissance est dominé par les composants silicium. Néanmoins, de nouveaux matériaux comme le nitrure de gallium ont émergé dans ce domaine grâce à leurs propriétés intéressantes. Ces nouveaux composants sont principalement réalisés sur des substrats silicium ce qui induit certaines problématiques lors de leur fabrication ou au niveau de leurs performances. Nous nous sommes intéressés dans cette thèse à des approches d’un point de vue du substrat dans l’objectif de résoudre ces problématiques. Ce travail a permis notamment de mettre en place une succession de procédés technologiques afin de remplacer le substrat silicium de fabrication par d’autres matériaux pour améliorer les performances de ces composants. Cette approche a notamment permis de transférer des composants fonctionnels sur un substrat cuivre. L’impact électrique et thermique du remplacement du substrat initial par un nouveau matériau a été étudié. Ce travail ouvre ainsi la voie du report de composants en nitrure de gallium réalisés sur des substrats silicium de diamètre 200 mm ou plus. / New materials such as gallium nitride (GaN) emerge as promising candidates for power electronics. The current trend is to fabricate the AlGaN/GaN power devices directly on (111) silicon substrates. It makes the expitaxy of the GaN challenging and affects the device performances. In this work, we focus on substrate approaches to solve these problems. A transfer process was developed to replace the silicon substrate by another material to enhance electrical performances of the devices. Especially, GaN devices were transferred on copper substrates without electrical degradation. Electrical and thermal characterizations were performed to study the impact of the transfer. This work offers a first approach on the transfer of GaN devices from 8 or even 12 inches silicon substrates.
2

Etude de l'influence des propriétés mécaniques des surfaces sur l'énergie de collage direct / Study of the influence of mechanicals properties of surfaces on the direct bonding energy

Desomberg, Jérôme 30 October 2018 (has links)
De nos jours, l’industrie de la microélectronique cherche à développer des composants toujours plus performants tout en réduisant la consommation d’énergie. Les solutions planaires ayant atteint leurs limites, desstructures 3D furent développées afin d’empiler verticalement les circuits. Cela nécessite une parfaite maitrise des différents procédés d’assemblage au sein desquels le collage direct de couches minces d’oxyde de silicium déposées par PECVD constitue une alternative intéressante en ce sens qu’elle permet l’élaboration à basse température de structures intégrant des couches isolantes composées d’oxyde de silicium.Le collage direct d’oxyde de silicium obtenu par voie thermique fut largement étudié par le passé. Cependant, l’utilisation d’oxyde de silicium obtenu par voie de dépôt PECVD fut jusqu’ici peu répandu dans les structures collées. L’objet de notre étude fut d’évaluer les particularités de l’oxyde de silicium déposé dans le cadre du collage direct ainsi que les mécanismes spécifiques mis en jeu lors du scellement de l’interface de collage. Le collage direct s’effectuant par la mise en contact de ces surfaces à température ambiante, puis étant généralement suivi d’un recuit de consolidation, des mécanismes particuliers auront lieu dans le volume de l’oxyde ainsi qu’à l’interface de collage permettant de différencier le comportement des oxydes déposés en collage.Dans cette étude, nous avons assemblés différentes configurations d’oxydes et montré l’influence primordiale de l’eau sur le collage direct. Il est apparu que, dès la température ambiante, cette dernière impactait déjà le collage en modifiant les propriétés physicochimiques et mécaniques de la subsurface de l’oxyde. A plus haute température, l’eau migre du volume de l’oxyde vers l’interface de collage permettant la fermeture de l’interface de collage en exacerbant les propriétés de l’oxyde précités. L’eau résultant de la fermeture de l’interface de collage est alors soit stockée à l’intérieur de cavités se formant à l’interface de collage, soit évacuée dans la subsurface de l’oxyde suivant la typologie de celui-ci. Il a également été montré que l’oxydedéposé disposait d’un profil de concentration d’eau relativement équilibré et qu’il pouvait contenir une quantité importante d’eau. Ces constations ont permis l’élaboration de structures bicouches optimisées pour le collage direct. La compréhension de ces différents mécanismes apporte un nouvel éclairage dans l’utilisation des procédés de collage direct pour les applications du futur. / Nowadays, the microelectronics industry is seeking to develop ever more efficient components while reducing energy consumption. Planar solutions having reached their limits, 3D structures were developed to vertically stack the circuits. This requires a perfect control of the different assembly processes in which the direct bonding of thin layers of silicon oxide deposited by PECVD constitutes an interesting alternative in the sense that it allows the elaboration at low temperature of structures integrating insulating layers composed of silicon oxide.The direct bonding of silicon oxide obtained by thermal oxidation has been widely studied in the past. However, the use of deposited PECVD silicon oxides has not been so far widespread in bonded structures. The purpose of our study was to evaluate the particularities of the silicon oxide deposited in the direct bonding framework as well as the specific mechanisms involved during sealing of the bonding interface. Since direct bonding takes place by bringing these surfaces into contact at room temperature and then generally followed byconsolidation annealing, special mechanisms will take place in the oxide volume and at the bonding interface to differentiate the behaviour of the PECVD deposited silicon oxides in bonding.In this study, we assembled different oxide configurations and showed the primordial influence of water on direct bonding. It appeared that, from the ambient temperature, the water was already impacting the bonding by modifying the physicochemical and mechanical properties of the oxide subsurface. At higher temperatures, the water migrates from the oxide volume to the bonding interface allowing the closing of the bonding interfaceby exacerbating the above oxide properties. The water resulting from the closing of the bonding interface is then either stored inside cavities forming at the bonding interface or discharged into the oxide subsurface dependingon the type of oxide. It was also shown that the deposited oxide had a relatively balanced water concentration profile and could contain a significant amount of water. These findings have led to the development of two-layerstructures optimized for direct bonding. Understanding these different mechanisms provides new insights into the use of direct bonding processes for future applications.
3

Contribution à l'étude des phénomènes mis en jeu par le collage direct à basse température de couches métalliques et oxydes métalliques.

Baudin, Floriane 21 October 2013 (has links) (PDF)
Le collage direct consiste en la mise en contact de deux surfaces suffisamment lisses et propres pour créer une adhérence entre-elles, et ce sans apport de matière à l'interface des matériaux. Ce procédé est réalisable à l'échelle industrielle et compatible avec les procédés de la microélectronique. Il trouve son principal intérêt dans la réalisation de substrats innovants. Le plus célèbre d'entre eux est le substrat SOI (pour " Silicon On Insulator "). Depuis quelques années, une nouvelle voie s'est ouverte dans le collage direct en l'élargissant au collage de couches métalliques ce qui permet de répondre à de nouvelles applications en offrant par exemple conduction électrique et dissipation thermique. Ce travail de thèse a pour objectif d'analyser le comportement du collage direct de couches métalliques et de poser les premiers éléments de modélisation. La compréhension de ces fondamentaux est indispensable pour optimiser le procédé et permettre une intégration de cette technologie dans un grand nombre de dispositifs. Dans cette étude, des procédés de collage direct de couches de tungstène et de titane ont été développés à la lumière des pré-requis établis pour le collage direct. La caractérisation physico-chimique des interfaces de collage et de leur évolution en température ont permis de mettre en évidence le rôle clé de l'oxyde métallique. Il est montré que les mécanismes de collage sont gouvernés par des phénomènes de diffusion aux joints de grains et par l'instabilité de la couche d'oxyde piégée à l'interface de collage. Par ailleurs, les propriétés mécaniques et électriques des interfaces ont été étudiées. Enfin, la compréhension du comportement des interfaces en fonction de certains paramètres conduit à quelques recommandations pour réussir l'intégration du collage direct métallique.
4

Contribution à l'étude des phénomènes mis en jeu par le collage direct à basse température de couches métalliques et oxydes métalliques / Investigation of the mechanisms involved in room temperature metal and oxides direct bonding

Baudin, Floriane 21 October 2013 (has links)
Le collage direct consiste en la mise en contact de deux surfaces suffisamment lisses et propres pour créer une adhérence entre-elles, et ce sans apport de matière à l'interface des matériaux. Ce procédé est réalisable à l'échelle industrielle et compatible avec les procédés de la microélectronique. Il trouve son principal intérêt dans la réalisation de substrats innovants. Le plus célèbre d'entre eux est le substrat SOI (pour « Silicon On Insulator »). Depuis quelques années, une nouvelle voie s'est ouverte dans le collage direct en l'élargissant au collage de couches métalliques ce qui permet de répondre à de nouvelles applications en offrant par exemple conduction électrique et dissipation thermique. Ce travail de thèse a pour objectif d'analyser le comportement du collage direct de couches métalliques et de poser les premiers éléments de modélisation. La compréhension de ces fondamentaux est indispensable pour optimiser le procédé et permettre une intégration de cette technologie dans un grand nombre de dispositifs. Dans cette étude, des procédés de collage direct de couches de tungstène et de titane ont été développés à la lumière des pré-requis établis pour le collage direct. La caractérisation physico-chimique des interfaces de collage et de leur évolution en température ont permis de mettre en évidence le rôle clé de l'oxyde métallique. Il est montré que les mécanismes de collage sont gouvernés par des phénomènes de diffusion aux joints de grains et par l'instabilité de la couche d'oxyde piégée à l'interface de collage. Par ailleurs, les propriétés mécaniques et électriques des interfaces ont été étudiées. Enfin, la compréhension du comportement des interfaces en fonction de certains paramètres conduit à quelques recommandations pour réussir l'intégration du collage direct métallique. / Direct wafer bonding refers to a process by which two mirror-polished wafers are put into contact and held together at room temperature without any additional materials. This technology is feasible at an industrial scale and compatible with the microelectronic processes. Wafer bonding finds many interests applied to innovative substrates realization. Therefore the use of direct wafer bonding is growing and extending to various materials. Since few years direct bonding involving metallic layers presents many interests as it can offer, for example, vertical electrical conduction or heat dissipation. The aim of this work is to analyze the bonding behavior and to propose a first model describing the bonding driving forces. A precise understanding of these mechanisms is essential for the optimization and the technological integration of the process in various devices. In this study, tungsten and titanium bonding processes were developed. Physical and chemical bonding interfaces characterizations have highlighted the key role of the metallic oxide. We showed that bonding mechanisms are driven by grain boundary diffusion phenomena and the interface trapped oxide layer instability. Moreover, mechanical and electrical properties were also studied. Finally, the bonding behavior understanding in function of define parameters lead to some recommendations for the bonding process integration achievement.
5

Intégration 3D haute densité : comportement et fiabilité électrique d'interconnexions métalliques réalisées par collage direct

Taibi, Mohamed 08 February 2012 (has links) (PDF)
Depuis plus de 50 ans, l'industrie de la microélectronique ne cesse d'évoluer afin de répondre à la demande d'augmentation des performances ainsi que des fonctionnalités des composants, tout en diminuant les tailles et les prix des produits. Cela est obtenu à ce jour principalement par la réduction des dimensions des composants électroniques. Cependant les dimensions actuelles des transistors atteignent une limitation physique et de nombreux effets parasites émergent. Il devient évident que dans un avenir très proche cet axe de développement ne sera plus envisageable. L'intégration tridimensionnelle apparaît alors comme une solution très prometteuse face à cette problématique de miniaturisation. Cette architecture permet la réalisation de composants plus performants tout en augmentant les fonctionnalités de ces derniers. Son concept consiste à empiler différents circuits de natures éventuellement différentes puis de les interconnecter électriquement à l'aide de connexions verticales. Le collage direct métallique permet en ce sens d'assembler mécaniquement et électriquement deux circuits l'un sur l'autre. Le but de ce travail de thèse est d'étudier le comportement électrique du procédé de collage direct métallique avant de l'intégrer dans un composant actif. On retrouve dans la première partie de ces travaux, la description du jeu de masque ainsi que les intégrations technologiques utilisées, pour réaliser les démonstrateurs 3D permettant les différentes caractérisations électriques de ces interconnexions métalliques. L'évolution de la résistance spécifique de l'interface de collage a été investiguée en fonction de la température de recuit. Puis, la fiabilité électrique de ces interconnexions a été étudiée en analysant leurs comportements face aux risques de dégradation induits par électromigration ou sous contrainte thermique. Des études physico-chimiques ont permis d'analyser les défaillances et de proposer des mécanismes. Pour finir, dans une dernière partie, les étapes technologiques nécessaires à une intégration 3D haute densité type puce à plaque ont été développées et caractérisées.
6

Dynamique de l'assemblage de wafers par adhésion moléculaire / Direct wafer bonding dynamics

Navarro, Etienne 19 May 2014 (has links)
Lors de l'assemblage de wafers par adhésion moléculaire, un mince film d'air est piégé entre les deux wafers, créant ainsi un système fluide/structure couplé.La qualité finale de l'assemblage dépend fortement de la dynamique de ce système.L'initiation et la propagation du collage ont été étudiées, en régime transitoire, en utilisant un modèle de plaques minces couplée avec l'équation de Reynolds. La résolution numérique de l'équation, ainsi que la mesure optique du déplacement vertical de la plaquette durant le collage, nous a permis de valider le modèle et de mieux comprendre la dynamique du collage.Dans la continuité de cette étude, nous avons proposé une expression analytique de la courbure finale de l'assemblage en fonction des forces en jeu pendant le collage, ceci en utilisant à nouveau la théorie des plaques minces et en considérant l'exitence d'un saut de déformation transverse le long de l'interface collée.Ce modèle a été validé par une expérience, impliquant le collage de wafers d'épaisseur différentes et en prenant soin de contrôler l'ensemble des forces agissant sur ces wafers. Nous observons une influence importante du film d'air sur la forme finale des wafers.En complément, un modèle du travail d'adhésion a été développé prenant en compte, à la fois, la rugosité d'interface et la quantité d'eau adsorbée. La différence de répartition de l'eau à l'interface de collage, nous permet d'expliquer les résultats expérimentaux montrant des valeurs d'énergie de séparation supérieure à celle de l'adhésion.Enfin, nous proposons une nouvelle méthode de mesure du travail d'adhésion pour la géométrie entière des wafers, utilisant la mesure de la taille d'une bulle cylindrique intentionnellement créée, par un petit objet, à l'interface de collage. / The direct wafer bonding process involves a coupled physical system, formed by the elastic deformation of the wafers and a thin layer of fluid trapped in-between the two wafers.Dynamics of the system during the contacting step has many practical consequences on the quality of the assembled stack.A model for the bonding dynamics is formulated using the thin plate theory and the Reynolds equation. The transient equation is solved numerically, allowing to study both the initiation and the propagation of the bonding. The model is supported by the measurement of the vertical movement of the wafer during the bonding, using an original setup involving optical sensors.Subsequently, an analytical model for the final curvature of the bonded stack is derived, as a function of the different load components acting on the wafers during the bonding, using the thin plate theory and by considering a transverse strain discontinuity locked at the bonding interface.Experimental validation is performing using two different wafer thicknesses. The measured bonded wafer profiles are well described by the model.In addition, a model for the work of adhesion is developed, taking into account both the interface roughness and the amount of adsorbed water.The interface energy controlling the adhesion is found different than for the separation because of the different distribution of water along the interface, in agreement with the experimental observations. At last, a new method to accurately measure the work of adhesion for the entire wafers geometry is proposed, using an elongated bubble intentionally created at the bonding interface and by measuring the induced wafer deflection.
7

Etude de l'intégration du collage direct cuivre/oxyde pour l'élaboration d'une architecture 3D-SIC / Study of the integration of copper/oxide direct bonding for the development of a 3D-SIC architecture

Beilliard, Yann 02 April 2015 (has links)
Cette thèse s'inscrit dans le contexte de l'intégration tridimensionnelle des dispositifs électroniques. Parmi les différentes techniques permettant d'assembler à la fois mécaniquement et électriquement les puces empilées, le collage direct de surfaces mixtes Cu-SiO2 représente l'option la plus prometteuse à ce jour. En effet, cette méthode permet d'atteindre la densité d'interconnexions de 106/cm² visée par l'industrie, tout en offrant une faible résistivité de contact et une excellente fiabilité. L'objectif de ce travail est de démontrer la compatibilité du procédé de collage direct hybride Cu-SiO2 avec des intégrations et des architectures proches de circuits réels. Dans ce but, des véhicules de tests intégrant des structures de cuivre à deux et quatre niveaux d'interconnexions ont été conçus spécifiquement. De plus, des simulations par éléments finis du procédé collage direct ont été développées au sein du logiciel Abaqus. Dans un premier temps, le procédé de collage direct puce-à-plaque en 200 et 300 mm est validé. Des caractérisations morphologiques et électriques montrent que cette méthode d'assemblage ne dégrade pas l'intégrité et les performances de structures de tests à deux niveaux par rapport à une intégration plaque-à-plaque. Par ailleurs, des tests de cyclage thermique confirment l'excellente robustesse mécanique des empilements. La deuxième partie de cette thèse s'intéresse à la caractérisation de la morphologie, des performances électriques et de la fiabilité de structures de tests à quatre niveaux d'interconnexions. Dans ce cas, l'architecture plaque-à-plaque en 200 mm des véhicules de tests se veut proche d'une intégration industrielle. Les diverses observations par microscopie électronique à balayage et en transmission indiquent une excellente qualité de collage des interfaces Cu/Cu et SiO2/SiO2. Par ailleurs, les mécanismes de formation des cavités nanométriques à l'interface Cu/Cu et le phénomène de diffusion du cuivre dans la silice sont investigués. Les caractérisations électriques révèlent des rendements de fonctionnement supérieurs à 95 % ainsi que des écarts types inférieurs à 3 % après recuit à 200 ou 400 °C. Enfin, les études de fiabilité incluant des tests de stockage en chaleur humide, de cyclage thermique, de stockage en température et d'électromigration attestent de la résistance à la corrosion et de la robustesse mécanique de cette intégration. Pour finir, les simulations par éléments finis indiquent que les interactions cohésives à l'interface de collage, combinées à la dilatation thermique du cuivre pendant le recuit, assistent significativement le processus de collage de surfaces de cuivre incurvées par sur-polissage. En outre, la déformation plastique macroscopique du cuivre semble avoir un effet néfaste sur le processus de scellement en freinant la propagation de l'onde de collage. / The context of this work is the three-dimensional integration of electronic devices. Among the various techniques allowing to assemble both mechanically and electrically stacked chips, the direct bonding of Cu-SiO2 mixed surfaces is the most promising option to date. Thanks to this method, the interconnection density of 106/cm² aimed by the industry is achievable, while providing a low contact resistivity and excellent reliability. The objective of this study is to demonstrate the compatibility of the direct hybrid bonding Cu-SiO2 process with integrations and architectures that mimic real circuits. For this purpose, test vehicles incorporating two-layer and four-layer copper test structures have been specifically designed. Furthermore, finite element simulations of the direct bonding process have been developed within the Abaqus software. First, the 200 and 300 mm chip-to-wafer direct bonding process is validated. Morphological and electrical characterizations show that this stacking method does not deteriorate the integrity and performances of two-layer test structures with respect to a wafer-to-wafer integration. Furthermore, thermal cycling tests confirm the excellent mechanical strength of the bonded dies. The second part of this work focuses on morphological, electrical and reliability characterizations of four-layer test structures. In this case, the 200 mm wafer-to-wafer architecture of the test vehicles is close to an industrial integration. The various observations conducted with scanning and transmission electron microscopy indicate an excellent bonding quality of Cu/Cu and SiO2/SiO2 interfaces. Furthermore, the formation mechanisms of cavities at the Cu/Cu interface and the copper diffusion phenomenon in the silica are investigated. Electrical characterizations show functional yields above 95 % and standard deviations below 3 % after annealing at 200 or 400 °C. Finally, reliability studies including unbiased HAST, thermal cycling, temperature storage and électromigration test prove the resistance to corrosion and the mechanical robustness of this integration. Finally, the finite element simulations indicate that the cohesive interactions at the bonding interface, combined with the thermal expansion of the copper during the annealing, significantly assist the bonding process of copper surfaces with a dishing effect. In addition, the macroscopic plastic deformation of the copper appears to have a detrimental effect on the sealing of the interface by slowing the propagation of the bonding wave.
8

Etude de la réponse acoustique des collages directs et temporaires / Acoustic response study of direct bonding

Dekious, Ali 12 December 2016 (has links)
Le collage direct est maintenant utilisé par un nombre croissant d'applications en microélectronique (Elaboration de SOI, technologie imager Back Side Illumination, technologies 3D...). C'est une technique d'assemblage permettant de coller deux surfaces sans apport de matière adhésive. Principalement utilisée pour le collage de wafers, elle vient en complément de techniques telles que l'épitaxie ou le dépôt de couches minces. Ce collage s'effectue sous certaines conditions : il faut que les surfaces soient suffisamment propres, planes et lisses pour qu'il y ait une adhésion spontanée à température et pression ambiante. Enfin, un traitement thermique est appliqué pour augmenter l'énergie d'adhérence. Pendant le processus de fabrication, il peut apparaître des défauts de collage qui sont essentiellement dus à un piégeage de particules. Ces défauts se présentent sous la forme de bulles d'air. Finalement, les défauts de collage et l'énergie de collage sont les deux caractéristiques à partir desquelles est déduite une qualité de collage.Aujourd'hui, la technique utilisée pour la mesure d'énergie de collage est le clivage au coin. C'est une technique qui consiste dans un premier temps à séparer partiellement deux wafers par une lame, et dans un second temps, à calculer l'énergie de collage à partir d'une équation comportementale qui intègre la longueur de décollement. Mis à part le fait qu'elle permette la mesure d'énergie seulement sur quelques points, il se trouve que c'est une technique destructive. Un contrôle non destructif serait très intéressant pour l'industrie microélectronique et spécialement pour les lignes d'inspection. De plus, les procédés de fabrication microélectronique n'étant pas uniforme, avoir la possibilité d'obtenir une cartographie d'énergie de collage serait un atout majeur. A ce jour, aucune technique respectant ces deux exigences n'est connue. L'objectif de cette étude est d'utiliser la microscopie acoustique pour mesurer l'énergie de collage.Dans cette étude, un modèle inspiré de la "méthode des matrices hybrides" a été développé afin de modéliser des collages de différentes qualités. Le résultat de la modélisation montrera que le coefficient de réflexion acoustique de la structure collée est influencé par la qualité d'interface. En se plaçant dans des conditions précises, une méthode expérimentale est alors réalisée pour la mesure de la qualité d'interface. En parallèle, des wafers de Silicium réalisés par collage direct ont été spécialement conçus pour valider la méthode. Sur ce principe, des cartographies bidimensionnelles d'énergie de collage sont réalisées.Dans un second temps, la technique est améliorée afin d'augmenter la résolution latérale. Pour cela, un transducteur ayant une lentille est utilisé pour focalisé les ondes ultrasonores en points du collage. Une étude théorique est tout d'abord menée en utilisant le modèle du "spectre angulaire" afin de simuler la diffraction par la lentille. Enfin, des cartographies expérimentales confirmeront la faisabilité de mesures d'énergie de collage hautes résolutions. / Direct bonding is used for many applications in microelectronics (SOI Silicon-On-Insulator technology, imager back side illumination technology, 3D technology...). It is a processes that consists in an assembly of two surfaces without any adhesive material. It is primarily used to bond silicon wafers and it is complementary with other microelectronics technique such as epitaxy, thin film deposition... Bonding requires special wafer surface conditions and preparations. The surfaces have to be clean, flat and smooth to obtain a spontaneous adhesion at ambient temperature and atmospheric pressure. A heat treatment is applied to increase the adherence energy. During the manufacturing process, bonding defects may appear which are due to trapping of particles. These bonding defects are essentially formed of air. Finally, bonding defects and bonding energy are the two main characteristics from which is deduced the bonding quality.Nowadays, the main technique that is used to measure the direct bonding energy is the double cantilever beam (DCB). The method consists in firstly partially separating the two wafers by a blade, and secondly calculating the bonding energy from an equation that integrates the debonding lenght. The major disadvantage of this technique is its destructiveness. Furthermore it is only possible to make measurements on few points.Thus a non-destructive characterisation could be very interesting especially for an industrial in-line inspection. Moreover, having the possibility to obtain a mapping of the bonding energy could lead to interesting development. Up to know, no technique can reach the both requirements. The aim of this work is to use the acoustic microscopy to measure the direct bonding energy.In this study, a model based on "hybrid matrix method" has been developed to model bonding with different qualities. The results of the modelling show that the acoustic reflection coefficient of the bonded structure is influenced by the quality of the interface. From these results, an experimental method is proposed to perform quality of the interface measurements from the reflection coefficients acquired under normal incidence. In parallel, silicon wafers have been bonded to validate the method. Finally, once the method validated, two-dimensional mappings of the interface quality are realised.Secondly, the technique is improved to increase the lateral resolution. For this, a transducer having a lens is used to focus the ultrasonic waves on the bonded structure. A theoretical study is conducted using the model of the "angular spectrum" to simulate the diffraction lens. Finally, experimental mapping confirm the feasibility of measuring bonding energy of high resolutions.
9

Etude de l'intégration du collage direct cuivre/oxyde pour l'élaboration d'une architecture 3D-SIC / Study of the integration of copper/oxide direct bonding for the development of a 3D-SIC architecture

Beilliard, Yann 02 April 2015 (has links)
Cette thèse s'inscrit dans le contexte de l'intégration tridimensionnelle des dispositifs électroniques. Parmi les différentes techniques permettant d'assembler à la fois mécaniquement et électriquement les puces empilées, le collage direct de surfaces mixtes Cu-SiO2 représente l'option la plus prometteuse à ce jour. En effet, cette méthode permet d'atteindre la densité d'interconnexions de 106/cm² visée par l'industrie, tout en offrant une faible résistivité de contact et une excellente fiabilité. L'objectif de ce travail est de démontrer la compatibilité du procédé de collage direct hybride Cu-SiO2 avec des intégrations et des architectures proches de circuits réels. Dans ce but, des véhicules de tests intégrant des structures de cuivre à deux et quatre niveaux d'interconnexions ont été conçus spécifiquement. De plus, des simulations par éléments finis du procédé collage direct ont été développées au sein du logiciel Abaqus. Dans un premier temps, le procédé de collage direct puce-à-plaque en 200 et 300 mm est validé. Des caractérisations morphologiques et électriques montrent que cette méthode d'assemblage ne dégrade pas l'intégrité et les performances de structures de tests à deux niveaux par rapport à une intégration plaque-à-plaque. Par ailleurs, des tests de cyclage thermique confirment l'excellente robustesse mécanique des empilements. La deuxième partie de cette thèse s'intéresse à la caractérisation de la morphologie, des performances électriques et de la fiabilité de structures de tests à quatre niveaux d'interconnexions. Dans ce cas, l'architecture plaque-à-plaque en 200 mm des véhicules de tests se veut proche d'une intégration industrielle. Les diverses observations par microscopie électronique à balayage et en transmission indiquent une excellente qualité de collage des interfaces Cu/Cu et SiO2/SiO2. Par ailleurs, les mécanismes de formation des cavités nanométriques à l'interface Cu/Cu et le phénomène de diffusion du cuivre dans la silice sont investigués. Les caractérisations électriques révèlent des rendements de fonctionnement supérieurs à 95 % ainsi que des écarts types inférieurs à 3 % après recuit à 200 ou 400 °C. Enfin, les études de fiabilité incluant des tests de stockage en chaleur humide, de cyclage thermique, de stockage en température et d'électromigration attestent de la résistance à la corrosion et de la robustesse mécanique de cette intégration. Pour finir, les simulations par éléments finis indiquent que les interactions cohésives à l'interface de collage, combinées à la dilatation thermique du cuivre pendant le recuit, assistent significativement le processus de collage de surfaces de cuivre incurvées par sur-polissage. En outre, la déformation plastique macroscopique du cuivre semble avoir un effet néfaste sur le processus de scellement en freinant la propagation de l'onde de collage. / The context of this work is the three-dimensional integration of electronic devices. Among the various techniques allowing to assemble both mechanically and electrically stacked chips, the direct bonding of Cu-SiO2 mixed surfaces is the most promising option to date. Thanks to this method, the interconnection density of 106/cm² aimed by the industry is achievable, while providing a low contact resistivity and excellent reliability. The objective of this study is to demonstrate the compatibility of the direct hybrid bonding Cu-SiO2 process with integrations and architectures that mimic real circuits. For this purpose, test vehicles incorporating two-layer and four-layer copper test structures have been specifically designed. Furthermore, finite element simulations of the direct bonding process have been developed within the Abaqus software. First, the 200 and 300 mm chip-to-wafer direct bonding process is validated. Morphological and electrical characterizations show that this stacking method does not deteriorate the integrity and performances of two-layer test structures with respect to a wafer-to-wafer integration. Furthermore, thermal cycling tests confirm the excellent mechanical strength of the bonded dies. The second part of this work focuses on morphological, electrical and reliability characterizations of four-layer test structures. In this case, the 200 mm wafer-to-wafer architecture of the test vehicles is close to an industrial integration. The various observations conducted with scanning and transmission electron microscopy indicate an excellent bonding quality of Cu/Cu and SiO2/SiO2 interfaces. Furthermore, the formation mechanisms of cavities at the Cu/Cu interface and the copper diffusion phenomenon in the silica are investigated. Electrical characterizations show functional yields above 95 % and standard deviations below 3 % after annealing at 200 or 400 °C. Finally, reliability studies including unbiased HAST, thermal cycling, temperature storage and électromigration test prove the resistance to corrosion and the mechanical robustness of this integration. Finally, the finite element simulations indicate that the cohesive interactions at the bonding interface, combined with the thermal expansion of the copper during the annealing, significantly assist the bonding process of copper surfaces with a dishing effect. In addition, the macroscopic plastic deformation of the copper appears to have a detrimental effect on the sealing of the interface by slowing the propagation of the bonding wave.
10

Réalisation, caractérisation et modélisation de collages de matériaux III-V pour cellules photovoltaïques à concentration / Processing, characterization and simulation of III-V compound semiconductor wafer bondings for concentrated photovoltaic

Blot, Xavier 12 November 2015 (has links)
La production d'énergie photovoltaïque est une option d'avenir pour répondre au développement économique de notre société tout en réduisant notre impact sur l'environnement. Mais pour devenir compétitive, cette filière doit améliorer le rendement des cellules solaires. Une technologie d'avenir consiste à combiner différents matériaux via une croissance par épitaxie et l'usage du collage direct. Cette thèse, financée par SOITEC, vise au développement du collage d'arseniure de gallium (GaAs) sur le phosphure d'indium (InP) pour la cellule SmartCell. L'objectif est d'optimiser son comportement électrique via un modèle numérique prenant en compte son état physico-chimique. Nous présentons d'abord un ensemble d'outils de caractérisations électriques pour réaliser une mesure I(V) précises de l'interface de collage. En fonction des cas, nous détaillons des contacts métalliques adaptés pour améliorer cette caractérisation. Une étude détaillée de l'hétérostructure GaAs/InP et des homostructures GaAs/GaAs et InP/InP amène ensuite à une compréhension de leur mécanisme de collage. Après recuit thermique, le procédé de collage hydrophile engendre des oxydes d'interfaces qui se résorbent dans le cas de l'InP et se fragmentent pour le GaAs. A paramètres constants, les empilements obtenus sont meilleurs que ceux de l'état de l'art au niveau électrique et mécanique. Nous poursuivons avec des propositions de procédés innovants pour maitriser l'oxyde d'interface et optimiser l'hétérostructure. Parmi ces options nous validons l'approche avec exposition ozone qui vise à générer sélectivement un oxyde avant mise en contact. L'empilement obtenu affiche une résistance proche de nos mesures de référence et a un fort potentiel. Enfin l'étude se conclue sur la présentation d'un modèle numérique inédit reliant procédé de collage, état d'interface et comportement électrique. A recuit donné, l'interface est hétérogène avec une zone reconstruite (conduction thermo-électronique) et une zone avec oxyde (conduction tunnel). Ces régions s'activent préférentiellement en fonction de la température de fonctionnement. Elles sont pondérés par un critère qui détermine le niveau de reconstruction du collage et qui sera utile pour de futurs développements de l'application. / The solar photovoltaic is a promising way to support our economical growth while it can reduce the environmental impact of our society. But, to be truly competitive, the sector has to develop more efficient solar cells. An interesting option aims at combining different materials either by epitaxy growth and direct bonding. The Ph.D. was funded by the SOITEC company with the goal to develop the bonding of the gallium arsenide (GaAs) on the indium phosphide (InP) for the SmartCell architecture. We had to optimize its electrical behavior with a numerical model taking into account the bonding interface state. We introduce the study with a wide range of I(V) tools to precisely characterize the bonding interface. Depending on the case, we detail suitable metal contacts to improve the test. A study in deep of the GaAs/InP heterostructure and the GaAs/GaAs and the InP/InP homostructures leads to a better understanding of the bonding mechanisms. After a thermal annealing, the hydrophilic bonding process generates oxyde compounds at the interface which are absorbed in the InP case and are fragmented in the GaAs case. For given parameters, our stacks are electrically and mechanically better than the state of the art. Then we propose innovative processes to control the interface oxyde and thus optimize the heterostructure. Among them, we validate a new approach with ozone exposure that selectively generates an oxyde prior to bonding. The interface resistance of the stack is therefore closed to our best results and has great potentials. To conclude, the study focuses on a novel numerical model connecting the bonding process, the interface state and the electrical behavior. For a given annealing, the interface is heterogenous with reconstructed areas (thermionic conduction) and oxyde areas (tunnel conduction). These regions are preferentially activated as a function of the operating temperature. They are weighted by a criteria determining the level of the bonding reconstruction which will be useful for the future developments of the application.

Page generated in 0.4409 seconds