• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 667
  • 233
  • 68
  • 54
  • 54
  • 23
  • 19
  • 13
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • Tagged with
  • 1464
  • 1464
  • 735
  • 437
  • 330
  • 280
  • 198
  • 181
  • 181
  • 171
  • 164
  • 148
  • 131
  • 128
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

aiWATERS: An Artificial Intelligence Framework for the Water Sector

Vekaria, Darshan 20 July 2023 (has links)
The ubiquity of Artificial Intelligence (AI) and Machine Learning (ML) applications has led to their widespread adoption across diverse domains like education, self-driving cars, healthcare, and more. AI is making its way into the industry, beyond research and academia. Concurrently, the water sector is undergoing a digital transformation, driven by challenges such as water demand forecasting, wastewater treatment, asset maintenance and management, and water quality assessment. Water utilities are at different stages in their journey of digital transformation, and its decision-makers, who are non-expert stakeholders in AI applications, must understand the technology to make informed decisions. The non-expert stakeholders should know that while AI has numerous benefits to offer, there are also many challenges related to data, model development, knowledge integration, and ethical concerns that should be considered before implementing it for real-world applications. Civil engineering is a licensed profession where critical decision-making is involved. Failure of critical decisions by civil engineers may put their license at risk, and therefore trust in any decision-support technology is crucial for its acceptance in real-world applications. This research proposes a framework called aiWATERS (Artificial Intelligence for the Water Sector) to facilitate the successful application of AI in the water sector. Based on this framework, we conduct pilot interviews and surveys with various small, medium, and large water utilities to capture their current state of AI implementation and identify the challenges faced by them. The research findings reveal that most of the water utilities are at an early stage of implementing AI as they face concerns regarding the blackbox nature, trustworthiness, and sustainability of AI technology in their system. The aiWATERS framework is intended to help the utilities navigate through these issues in their journey of digital transformation. / Master of Science / The widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) in various industries like education, self-driving cars, healthcare, and more has spurred interest in its potential application in the water sector. As the water sector undergoes a digital transformation to address challenges such as water demand forecasting, wastewater treatment, asset management, and water quality assessment, water utilities need to understand the benefits and challenges of AI technology. Automating water sector operations through AI involves high risk as it has a huge ecological, economic, and sociological impact on society. Water utilities are non-expert end users of AI and they should be aware of its challenges such as data management, model development, domain knowledge integration, and ethical concerns when implementing AI for real-world applications. To address these challenges, this research proposes a framework called aiWATERS (Artificial Intelligence for the Water Sector) to help water utilities successfully apply AI technology in their system. We conduct pilot interviews and surveys with small, medium, and large water utilities across the United States to capture their current AI practices and challenges. The research results led us to find that water utilities are still at an early stage of adopting AI in their system and are faced with issues such as blackbox nature of the technology, its trustworthiness for real-world application, and sustainability at the utilities. We believe that aiWATERS will serve as a relevant guide for water utilities and will help them overcome current AI-based challenges.
92

Feasibility of the Ottawa decision support tool to assist HIV positive mothers' infant feeding choice / Ncheka Moloimang Sezarinah

Sezarinah, Ncheka Moloimang January 2014 (has links)
The study investigated the feasibility of the Ottawa decision support tool to assist HIV positive mothers' infant feeding choice. The aim was to explore and describe the feasibility of the Ottawa Decision Support Tool (ODST) in counselling HIV infected pregnant women on decision-making regarding the choice of safe infant feeding. The finding of this study will assist and support HIV positive mothers to be independent decision makers in choosing an infant feeding option for their babies. A descriptive qualitative research approach guided the researcher to explore and describe the feasibility of the ODST to assist HIV positive mothers' infant feeding choice. This study is based on the Ottawa decision support framework (ODSF). Three focus group that comprised midwives as participants were conducted. The first focus group was conducted in January 2013 and the two subsequent ones in August 2013. Data was analysed using a framework approach. The following themes emerged from data-analysis: • Appropriateness • Receptiveness of intervention • Effectiveness Conclusions were drawn based on the attained objectives of the study. The overall conclusion was that the ODST is feasible to assist HIV positive mothers' infant feeding choice. Limitations of the study were identified and recommendations were made for nursing practice, nursing education and further research. / MCur, North-West University, Potchefstroom Campus, 2015
93

Feasibility of the Ottawa decision support tool to assist HIV positive mothers' infant feeding choice / Ncheka Moloimang Sezarinah

Sezarinah, Ncheka Moloimang January 2014 (has links)
The study investigated the feasibility of the Ottawa decision support tool to assist HIV positive mothers' infant feeding choice. The aim was to explore and describe the feasibility of the Ottawa Decision Support Tool (ODST) in counselling HIV infected pregnant women on decision-making regarding the choice of safe infant feeding. The finding of this study will assist and support HIV positive mothers to be independent decision makers in choosing an infant feeding option for their babies. A descriptive qualitative research approach guided the researcher to explore and describe the feasibility of the ODST to assist HIV positive mothers' infant feeding choice. This study is based on the Ottawa decision support framework (ODSF). Three focus group that comprised midwives as participants were conducted. The first focus group was conducted in January 2013 and the two subsequent ones in August 2013. Data was analysed using a framework approach. The following themes emerged from data-analysis: • Appropriateness • Receptiveness of intervention • Effectiveness Conclusions were drawn based on the attained objectives of the study. The overall conclusion was that the ODST is feasible to assist HIV positive mothers' infant feeding choice. Limitations of the study were identified and recommendations were made for nursing practice, nursing education and further research. / MCur, North-West University, Potchefstroom Campus, 2015
94

A framework and prototype for intelligent multiple objectives group decision support systems.

Lu, Jie January 2000 (has links)
The objectives of this research are threefold: (i) to develop a conceptual framework and a prototype in order to extend the application capability of a category of multiple objective decision support systems (MODSS) techniques; (ii) to explore the combined functionalities of knowledge-based expert systems (ES) and MODSS through embedding an intelligent front-end, and (iii) to develop a new system and process of dealing with multiple objective decision making (MODM) models in a group decision support system (GDSS) framework. Ultimately, a system that integrates MODSS, ES and GDSS is generated, which is then evaluated in a laboratory experimental setup. This integrated system contains a sufficient number of MODM methods to solve MODM problems, provides an ES-based guide to select and use the most suitable MODM method, and has the capability to aggregate individual decision makers' preferences to produce a compromise solution of an MODM problem in different forms and styles of group meetings. The system is supported by a set of group decision making (GDM) methods which combine the preferences of the individual group members and thus increases the confidence of each group member in the compromise solution.The research is conducted using a multiple-methodologies approach using the system development methodology as the backbone. The conceptual framework of the integrated system is elaborated to integrate multiple system elements into one facility at the application system level based on functional and resource integration. A prototype implements this conceptual framework as an intelligence-based and graphical user interface (GUI)-based MODSS that works in an individual/group environment. Both the conceptual framework and the prototype are called Intelligent Multiple Objectives Group Decision Support Systems (IMOGDSS).Initial evaluation of the IMOGDSS is encouraging, which ++ / is conducted in the form of testing a number of hypotheses in an experimental setup. This research thus makes contributions in both theoretical and application domains. Five major contributions are listed below:It develops a unique conceptual framework of integrating MODSS, ES and GDSS effectively to deal with MODM problem in individual/group decision making under a knowledge-based intelligent architecture.It provides a new application of ES, that is, utilising knowledge-based ES to select the most efficient MODM method for each particular decision maker (or decision group) in a particular decision problem.The complete method management function of the MODM methodology base guides the decision makers to use the most suitable method to solve their decision making problems, allows them to use multiple methods to resolve complex problems, that could not otherwise be solved with a single MODM, and also allows the group members to get solutions from different methods.This study produces an opportunity to select and apply the 'best' aggregation model to aggregate the individual solutions of an MODM problem through integrating various GDM methods in a methodology base.This study implements a two-stage configuration of group decision support software that provides a GUI-based hierarchical procedure for solving MODM problems with intelligent guidance in a decision group. The two-stage group decision making procedure is able to help the decision makers to analyse, understand and interact cooperatively in the group decision making process to reach a compromise solution.
95

Envisioning a Future Decision Support System for Requirements Engineering : A Holistic and Human-centred Perspective

Alenljung, Beatrice January 2008 (has links)
Complex decision-making is a prominent aspect of requirements engineering (RE) and the need for improved decision support for RE decision-makers has been identified by a number of authors in the research literature. The fundamental viewpoint that permeates this thesis is that RE decision-making can be substantially improved by RE decision support systems (REDSS) based on the actual needs of RE decision-makers as well as the actual generic human decision-making activities that take place in the RE decision processes. Thus, a first step toward better decision support in requirements engineering is to understand complex decision situations of decision-makers. In order to gain a holistic view of the decision situation from a decision-maker’s perspective, a decision situation framework has been created. The framework evolved through an analysis of decision support systems literature and decision-making theories. The decision situation of RE decision-makers has been studied at a systems engineering company and is depicted in this thesis. These situations are described in terms of, for example, RE decision matters, RE decision-making activities, and RE decision processes. Factors that affect RE decision-makers are also identified. Each factor consists of problems and difficulties. Based on the empirical findings, a number of desirable characteristics of a visionary REDSS are suggested. Examples of characteristics are to reduce the cognitive load, to support creativity and idea generation, and to support decision communication. One or more guiding principles are proposed for each characteristic and available techniques are described. The purpose of the principles and techniques is to direct further efforts concerning how to find a solution that can fulfil the characteristic. Our contributions are intended to serve as a road map that can direct the efforts of researchers addressing RE decision-making and RE decision support problems. Our intention is to widen the scope and provide new lines of thought about how decision-making in RE can be supported and improved.
96

Division for conquest : decision support for information architecture specification /

Stegwee, Robert A. January 1900 (has links)
Thesis (doctoral)--Rijksuniversiteit Groningen, 1992. / Includes bibliographical references (p. 223-230).
97

A control system for organizational health submitted to Program in Hospital Administration ... in partial fulfillment ... for the degree of Master of Hospital Administration /

Cooper, Richard. January 1975 (has links)
Thesis (M.H.A.)--University of Michigan, 1975.
98

A control system for organizational health submitted to Program in Hospital Administration ... in partial fulfillment ... for the degree of Master of Hospital Administration /

Cooper, Richard. January 1975 (has links)
Thesis (M.H.A.)--University of Michigan, 1975.
99

Application of voice recognition input to decision support systems

Drake, Robert Gervase 12 1900 (has links)
Approved for public release; distribution is unlimited / The goal of this study is to provide a single source of data that enables the selection of an appropriate voice recognition (VR) application for a decision support system (DSS) as well as for other computer applications. A brief background of both voice recognition systems and decision supports systems is provided with special emphasis given to the dialog component of DSS. The categories of voice recognition discussed are human factors, environmental factors, situational factors, quantitative factors, training factors, host computer factors, and experiments and research. Each of these areas of voice recognition is individually analyzed, and specific references to applicable literature are included. This study also includes appendices that contain: a glossary (including definitions) of phrases specific to both decision support system and voice recognition systems, keywords applicable to this study, an annotated bibliography (alphabetically and by specific topics) of current VR systems literature containing over 200 references, an index of publishers, a complete listing of current commercially available VR systems. / http://archive.org/details/applicationofvoi00drak / Lieutenant, United States Navy
100

Decentralising the codification of rules in a decision support expert knowledge base

De Kock, Erika 04 March 2004 (has links)
The paradigm of Decision Support Systems (DSS) is to support decision-making, while an Expert System’s (ES) major objective is to provide expert advice in specialised situations. Knowledge-Based DSS (KB-DSS), also called Intelligent Decision Support Systems (IDSS), integrate traditional DSS with the advances of ES. A KB-DSS’ knowledge base usually contains knowledge expressed by an expert and captured by a knowledge engineer. The indirect transfer between the domain expert and the knowledge base through a knowledge engineer may lead to a long and inefficient knowledge acquisition process. This thesis compares 11 DSS packages in search of a (KB-) DSS generator where domain experts can specify and maintain a Specific Decision Support System (SDSS) to assist users in making decisions. The proposed (KB-) DSS-generator is tested with a university and study-program prototype. Since course and study plan programs change intermittently, the (KB-) DSS’ knowledge base enables domain experts to set and maintain their course and study plan rules without the assistance of a knowledge engineer. Criteria are set to govern the (KB-) DSS generator search process. Example knowledge base rules are inspected to determine if domain experts will be able to maintain a set of production rules used in a student registration advice system. By developing a prototype and inspecting knowledge base rules, it was found that domain experts would be able to maintain their knowledge in the decentralised knowledge base, on condition that the objects and attributes used in the rule base were first specified by a builder/programmer. / Dissertation (MSc Computer Science)--University of Pretoria, 2005. / Computer Science / unrestricted

Page generated in 0.0561 seconds