• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 73
  • 14
  • 10
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 225
  • 225
  • 89
  • 82
  • 72
  • 41
  • 40
  • 39
  • 37
  • 37
  • 34
  • 30
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A microprocessor-based prosthesis controller for use during early walking training of above-knee amputees

Tanquary, Mark Louis January 1978 (has links)
Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 66-67. / by Mark L. Tanquary. / M.S.
42

Modelamento da malha de controle da corrente em conversores de potência modulados por largura de pulso. / Current control loop modeling of pulse width modulated power converters.

Rubens Domingos de Miranda 30 July 2012 (has links)
Este trabalho propõe a adoção de uma estrutura de controle, com base na tese de doutorado de (BUEHNER, 2010), a qual utiliza um modelo com a dinâmica inversa da planta a ser controlada, de maneira a prover a pré-alimentação da tensão de referência para o controle de um conversor de potência monofásico, modulado por largura de pulso (PWM), obtendo-se bons resultados para o rastreamento da corrente do indutor de filtro conectado à saída deste conversor de potência. No trabalho, são apresentadas outras duas estruturas de controle por pré-alimentação, responsáveis respectivamente pelo cancelamento da perturbação gerada pela tensão na saída do filtro indutivo e pelo cancelamento do erro de tensão gerado pelo tempo morto. Com o intuito de assegurar o desempenho de rastreamento da corrente, face às variações de parâmetros do processo e as imperfeições existentes no modelamento da planta real, emprega-se a estrutura de controle proporcional, em malha fechada, assegurando a robustez da estrutura de controle, facilitando-se o ajuste da malha de controle. Os resultados de simulação e obtidos experimentalmente são comparados, validando-se efetivamente a estratégia de controle proposta. / This work presents the control structure based on (BUEHNER, 2010) PhD thesis, which uses an inverse dynamic model for the plant to be controlled, providing the feedforward voltage reference to control a single-phase, pulse width modulated power converter (VSI-PWM), achieving good results for the output inductor current tracking, connected on the power converter output. Two feedforward control structures are presented, for the cancellation of the voltage disturbance generated by the output filter voltage and the cancellation of voltage error generated by the dead time implementation, respectively. In order to ensure the current tracking performance in face of process parameter variations and modeling imperfections existing in the real plant, the closed loop proportional is employed under the proposed control structure, ensuring the control robustness, and facilitating the loop gain adjustments. The simulation and experimental results are obtained and compared, effectively evaluating the proposed control strategy.
43

Wide input range DC-DC converter with digital control scheme

Harfman Todorovic, Maja 12 April 2006 (has links)
In this thesis analysis and design of a wide input range DC-DC converter is proposed along with a robust power control scheme. The proposed converter and its control is designed to be compatible to a fuel cell power source, which exhibits 2:1 voltage variation as well as a slow transient response. The proposed approach consists of two stages: a primary three-level boost converter stage cascaded with a high frequency, isolated boost converter topology, which provides a higher voltage gain and isolation from the input source. The function of the first boost converter stage is to maintain a constant voltage at the input of the cascaded DC-DC converter to ensure optimal performance characteristics with high efficiency. At the output of the first boost converter a battery or ultracapacitor energy storage is connected to take care of the fuel cell slow transient response (200 watts/min). The robust features of the proposed control system ensure a constant output DC voltage for a variety of load fluctuations, thus limiting the power being delivered by the fuel cell during a load transient. Moreover, the proposed configuration simplifies the power control management and can interact with the fuel cell controller. The simulation results and the experimental results confirm the feasibility of the proposed system.
44

Digital stabilizer for brushless doubly-fed machine

Krishnan, Sheela 01 October 1990 (has links)
The exceptional feature of the brushless doubly-fed machine is the lack of need for frequent replacement of brushes. The inherent instability of this machine has to be overcome for its application in adjustable speed drives and variable speed generation systems. Specific objectives were: to study the characteristics of the machine pertinent to its application in adjustable speed drives and variable speed generation systems, to develop a stabilizer depending on the nature of the instability. The brushless doubly-fed machine was found to be unstable over much of the useful operating range. A digital feedback control was implemented using a combination of hardware and software elements/to stabilize the machine. The feedback system was a band pass filter. The software was developed with a processing time fast enough to match the speed of response required by the stabilizer to overcome the unstable oscillations. The performance of the machine was compared with and without the stabilizer to test its effectiveness. Stable operation was achieved over the entire operating region. / Graduation date: 1991
45

A Digitally Controlled Dual Output Stage Buck Converter with Transient Suppression

Ng, Kendy Chun-Wa 15 February 2010 (has links)
To support the increasingly demanding requirements for power conversion units, a digitally controlled dual output stage buck converter is designed. The system consists of a dual output stage, which includes an auxiliary buck output stage connected in parallel with a main output stage. The auxiliary output stage is only active during load transient to suppress the output voltage variation. A digital controller is designed to control both stages with a linear/nonlinear control scheme. Nonlinear control is applied during load transient based on the capacitor charge balance principle; whereas linear PID control governs the steady state operation. The design is verified with simulation and experimentally with discrete components. The controller is realized with a FPGA with preset output stage parameters. The experimental result shows a 60% reduction of output voltage variation for a heavy-to-light load transient.
46

DC-DC Converter with Improved Dynamic Response and Efficiency Using a Calibrated Auxiliary Phase

Wen, Yue 04 January 2012 (has links)
A digital adaptive slope control (DASC) technique is presented to improve the dynamic response and efficiency of a current programmed mode (CPM) buck converter employing a low-cost auxiliary phase. Compared to the existing nonlinear control techniques, the advantages of the proposed control scheme include superior voltage droop and settling time, and on-line calibration to compensate for tolerance in the inductance. The proposed technique is experimentally verified on a 500 kHz, 10 V to 2.5 V CPM buck converter prototype. Charge balancing and optimal transient response are achieved for a range of positive and negative load steps. In addition, compared to a representative single phase converter, the proposed system not only has better dynamic response but also achieves 2 % heavy-load and 10 % light-load steady-state efficiency improvement. The impact of the auxiliary phase operation on the converter’s dynamic efficiency is also evaluated at different load step amplitudes and frequencies.
47

A Digitally Controlled Dual Output Stage Buck Converter with Transient Suppression

Ng, Kendy Chun-Wa 15 February 2010 (has links)
To support the increasingly demanding requirements for power conversion units, a digitally controlled dual output stage buck converter is designed. The system consists of a dual output stage, which includes an auxiliary buck output stage connected in parallel with a main output stage. The auxiliary output stage is only active during load transient to suppress the output voltage variation. A digital controller is designed to control both stages with a linear/nonlinear control scheme. Nonlinear control is applied during load transient based on the capacitor charge balance principle; whereas linear PID control governs the steady state operation. The design is verified with simulation and experimentally with discrete components. The controller is realized with a FPGA with preset output stage parameters. The experimental result shows a 60% reduction of output voltage variation for a heavy-to-light load transient.
48

DC-DC Converter with Improved Dynamic Response and Efficiency Using a Calibrated Auxiliary Phase

Wen, Yue 04 January 2012 (has links)
A digital adaptive slope control (DASC) technique is presented to improve the dynamic response and efficiency of a current programmed mode (CPM) buck converter employing a low-cost auxiliary phase. Compared to the existing nonlinear control techniques, the advantages of the proposed control scheme include superior voltage droop and settling time, and on-line calibration to compensate for tolerance in the inductance. The proposed technique is experimentally verified on a 500 kHz, 10 V to 2.5 V CPM buck converter prototype. Charge balancing and optimal transient response are achieved for a range of positive and negative load steps. In addition, compared to a representative single phase converter, the proposed system not only has better dynamic response but also achieves 2 % heavy-load and 10 % light-load steady-state efficiency improvement. The impact of the auxiliary phase operation on the converter’s dynamic efficiency is also evaluated at different load step amplitudes and frequencies.
49

Wide input range DC-DC converter with digital control scheme

Harfman Todorovic, Maja 12 April 2006 (has links)
In this thesis analysis and design of a wide input range DC-DC converter is proposed along with a robust power control scheme. The proposed converter and its control is designed to be compatible to a fuel cell power source, which exhibits 2:1 voltage variation as well as a slow transient response. The proposed approach consists of two stages: a primary three-level boost converter stage cascaded with a high frequency, isolated boost converter topology, which provides a higher voltage gain and isolation from the input source. The function of the first boost converter stage is to maintain a constant voltage at the input of the cascaded DC-DC converter to ensure optimal performance characteristics with high efficiency. At the output of the first boost converter a battery or ultracapacitor energy storage is connected to take care of the fuel cell slow transient response (200 watts/min). The robust features of the proposed control system ensure a constant output DC voltage for a variety of load fluctuations, thus limiting the power being delivered by the fuel cell during a load transient. Moreover, the proposed configuration simplifies the power control management and can interact with the fuel cell controller. The simulation results and the experimental results confirm the feasibility of the proposed system.
50

Microcomputer control of excitation of a synchronous machine /

Lo, Kin-chung. January 1981 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1982.

Page generated in 0.055 seconds